File size: 8,505 Bytes
821537b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import List, Optional

import numpy as np
import torch

from llama import Llama, Transformer

from metrics import *


def sample_top_p(probs: torch.Tensor, p: float):
    """
    Perform top-p (nucleus) sampling on a probability distribution.

    Args:
        probs (torch.Tensor): Probability distribution tensor.
        p (float): Probability threshold for top-p sampling.

    Returns:
        torch.Tensor: Sampled token indices.

    Note:
        Top-p sampling selects the smallest set of tokens whose cumulative probability mass
        exceeds the threshold p. The distribution is renormalized based on the selected tokens.

    """
    probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
    probs_sum = torch.cumsum(probs_sort, dim=-1)
    mask = probs_sum - probs_sort > p
    probs_sort[mask] = 0.0
    probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
    next_token = torch.multinomial(probs_sort, num_samples=1)
    next_token = torch.gather(probs_idx, -1, next_token)
    return next_token


class TransformerWrapper(Transformer):
    def __init__(self, model):
        self.__dict__ = model.__dict__.copy()

    @torch.inference_mode()
    def forward(
        self,
        tokens: torch.Tensor,
        start_pos: int,
        return_hiddens: Optional[bool] = False):
        """
        Perform a forward pass through the Transformer model.

        Args:
            tokens (torch.Tensor): Input token indices.
            start_pos (int): Starting position for attention caching.
            (Optional) return_hiddens (bool): Whether to return hidden states. Defaults to False.

        Returns:
            torch.Tensor: Output logits after applying the Transformer model.
            (Optional) List[torch.Tensor]: Hidden states for each transformer block.
        """
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        self.freqs_cis = self.freqs_cis.to(h.device)
        freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]

        mask = None
        if seqlen > 1:
            mask = torch.full(
                (seqlen, seqlen), float("-inf"), device=tokens.device
            )

            mask = torch.triu(mask, diagonal=1)

            # When performing key-value caching, we compute the attention scores
            # only for the new sequence. Thus, the matrix of scores is of size
            # (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
            # j > cache_len + i, since row i corresponds to token cache_len + i.
            mask = torch.hstack([
                torch.zeros((seqlen, start_pos), device=tokens.device),
                mask
            ]).type_as(h)

        hiddens = [h]
        for layer in self.layers:
            h = layer(h, start_pos, freqs_cis, mask)
            if return_hiddens:
                hiddens.append(h)

        h = self.norm(h)
        output = self.output(h).float()

        if return_hiddens:
            return output, hiddens

        return output
        

class ShortLlama():

    def __init__(self, llama: Llama, n_prune_layers: Optional[int] = None):
        checkpoint = llama.model.state_dict()
        llama.model = TransformerWrapper(llama.model)  # wrap transformer to collect hidden states
        llama.model.load_state_dict(checkpoint, strict=False)
        self.llama = llama

        self.n_prune_layers = n_prune_layers
        self.importances = [0 for _ in self.llama.model.layers]  # layer-wise importance scores

    def remove_layers(
        self,
        layers_to_remove: Optional[List[int]] = [],
        angular: Optional[bool] = False
    ):
        if angular:
            assert self.importances, "Need to compute importances with eval_importance()"
            assert self.n_prune_layers, "Need number of layers to prune, set `n_prune_layers`"
            start_layer = np.argsort(np.array(self.importances[:-self.n_prune_layers+1]))[0]
            layers_to_remove = list(range(start_layer, start_layer + self.n_prune_layers))
        elif not layers_to_remove and self.n_prune_layers:
            assert self.importances, "Need to compute importances with eval_importance()"
            layers_to_remove = np.argsort(np.array(self.importances))[:self.n_prune_layers].tolist()

        # remove layers in reverse to avoid indexing errors
        for layer_idx in sorted(layers_to_remove, reverse=True):
            try:
                del self.llama.model.layers[layer_idx]
            except IndexError:
                print(f"layer {layer_idx} does not exist, function may have already been called")
                return []
        
        return layers_to_remove
    
    def compute_bi(self, hiddens: List[torch.Tensor], angular: bool):
        n = 1
        if angular:
            assert self.n_prune_layers is not None, "Set number of layers to prune to use angular importance"
            n = self.n_prune_layers

        for i in range(len(hiddens) - n):
            in_hidden = hiddens[i]
            out_hidden = hiddens[i+n]
            if angular:
                # use only last token for angular distance as described in section 3.2
                # https://arxiv.org/pdf/2403.17887.pdf
                in_hidden = in_hidden[:,-1:]
                out_hidden = out_hidden[:,-1:]
            
            self.importances[i] += block_influence(
                in_hidden,
                out_hidden,
                angular=angular
            ).sum().cpu().item()

    @torch.inference_mode()
    def eval_importance(
        self,
        prompt_tokens: List[List[int]],
        max_gen_len: Optional[int] = 0,
        temperature: Optional[float] = 0.6,
        top_p: Optional[float] = 0.9,
        angular: Optional[bool] = False
    ):
        """
        Computes layer-wise importances over input tokens.

        NOTE: ShortGPT paper performs no generation during importance computation, which suggests a `max_gen_len`= 0.

        Args:
            prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
            (Optional) max_gen_len (int): Maximum length of the generated text sequence.
            (Optional) temperature (float): Temperature value for controlling randomness in sampling. Defaults to 0.6.
            (Optional) top_p (float): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
            (Optional) angular (bool): Whether to ues angular distance. Defaults to False.

        Returns:
            None
        """
        params = self.llama.model.params
        bsz = len(prompt_tokens)
        assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)

        min_prompt_len = min(len(t) for t in prompt_tokens)
        max_prompt_len = max(len(t) for t in prompt_tokens)
        assert max_prompt_len <= params.max_seq_len
        total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)

        pad_id = self.llama.tokenizer.pad_id
        tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
        for k, t in enumerate(prompt_tokens):
            tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")

        prev_pos = 0
        eos_reached = torch.tensor([False] * bsz, device="cuda")
        input_text_mask = tokens != pad_id
        
        for cur_pos in range(min_prompt_len, total_len):
            logits = self.llama.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
            if temperature > 0:
                probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
                next_token = sample_top_p(probs, top_p)
            else:
                next_token = torch.argmax(logits[:, -1], dim=-1)

            next_token = next_token.reshape(-1)
            # only replace token if prompt has already been generated
            next_token = torch.where(
                input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
            )
            tokens[:, cur_pos] = next_token
            eos_reached |= (~input_text_mask[:, cur_pos]) & (
                next_token == self.llama.tokenizer.eos_id
            )
            prev_pos = cur_pos
            if all(eos_reached):
                break
        
        # compute block influence over full sequences rather than at each token
        _, hiddens = self.llama.model.forward(tokens, 0, return_hiddens=True)
        self.compute_bi(hiddens, angular=angular)
        
        return