File size: 66,220 Bytes
821537b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.40.2)\n",
      "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.19.1)\n",
      "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.1)\n",
      "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.23.0)\n",
      "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.26.2)\n",
      "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.2)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
      "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.4.28)\n",
      "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
      "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.19.1)\n",
      "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.3)\n",
      "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.2)\n",
      "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (16.0.0)\n",
      "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
      "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n",
      "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.2.2)\n",
      "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n",
      "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n",
      "Requirement already satisfied: fsspec<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<=2024.3.1,>=2023.1.0->datasets) (2023.10.0)\n",
      "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.0b0)\n",
      "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n",
      "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n",
      "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
      "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
      "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
      "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers) (4.8.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.6)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.1.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.11.17)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
      "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.1)\n",
      "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.1)\n",
      "Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
      "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
      "\u001b[0m"
     ]
    }
   ],
   "source": [
    "# Transformers installation\n",
    "# ! pip install transformers datasets\n",
    "# To install from source instead of the last release, comment the command above and uncomment the following one.\n",
    "# ! pip install git+https://github.com/huggingface/transformers.git"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Causal language modeling"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There are two types of language modeling, causal and masked. This guide illustrates causal language modeling.\n",
    "Causal language models are frequently used for text generation. You can use these models for creative applications like\n",
    "choosing your own text adventure or an intelligent coding assistant like Copilot or CodeParrot."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "cellView": "form",
    "hide_input": true
   },
   "outputs": [],
   "source": [
    "# #@title\n",
    "# from IPython.display import HTML\n",
    "\n",
    "# HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Vpjb1lu0MDk?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Causal language modeling predicts the next token in a sequence of tokens, and the model can only attend to tokens on\n",
    "the left. This means the model cannot see future tokens. GPT-2 is an example of a causal language model.\n",
    "\n",
    "This guide will show you how to:\n",
    "\n",
    "1. Finetune [DistilGPT2](https://huggingface.co/distilgpt2) on the [r/askscience](https://www.reddit.com/r/askscience/) subset of the [ELI5](https://huggingface.co/datasets/eli5) dataset.\n",
    "2. Use your finetuned model for inference.\n",
    "\n",
    "<Tip>\n",
    "You can finetune other architectures for causal language modeling following the same steps in this guide.\n",
    "Choose one of the following architectures:\n",
    "\n",
    "<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->\n",
    "[BART](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bart), [BERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bert), [Bert Generation](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bert-generation), [BigBird](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/big_bird), [BigBird-Pegasus](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bigbird_pegasus), [BioGpt](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/biogpt), [Blenderbot](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/blenderbot), [BlenderbotSmall](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/blenderbot-small), [BLOOM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bloom), [CamemBERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/camembert), [CodeGen](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/codegen), [CPM-Ant](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/cpmant), [CTRL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/ctrl), [Data2VecText](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/data2vec-text), [ELECTRA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/electra), [ERNIE](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/ernie), [GIT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/git), [GPT-Sw3](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt-sw3), [OpenAI GPT-2](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt2), [GPTBigCode](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_bigcode), [GPT Neo](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neo), [GPT NeoX](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neox), [GPT NeoX Japanese](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neox_japanese), [GPT-J](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gptj), [LLaMA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/llama), [Marian](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/marian), [mBART](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mbart), [MEGA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mega), [Megatron-BERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/megatron-bert), [MVP](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mvp), [OpenLlama](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/open-llama), [OpenAI GPT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/openai-gpt), [OPT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/opt), [Pegasus](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/pegasus), [PLBart](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/plbart), [ProphetNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/prophetnet), [QDQBert](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/qdqbert), [Reformer](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/reformer), [RemBERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/rembert), [RoBERTa](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roberta), [RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roberta-prelayernorm), [RoCBert](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roc_bert), [RoFormer](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roformer), [RWKV](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/rwkv), [Speech2Text2](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/speech_to_text_2), [Transformer-XL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/transfo-xl), [TrOCR](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/trocr), [XGLM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xglm), [XLM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm), [XLM-ProphetNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-prophetnet), [XLM-RoBERTa](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-roberta), [XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-roberta-xl), [XLNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlnet), [X-MOD](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xmod)\n",
    "\n",
    "\n",
    "<!--End of the generated tip-->\n",
    "\n",
    "</Tip>\n",
    "\n",
    "Before you begin, make sure you have all the necessary libraries installed:\n",
    "\n",
    "```bash\n",
    "pip install transformers datasets evaluate\n",
    "```\n",
    "\n",
    "We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a6d9e280e08e40ddbbcb8fbe97e1fae9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# from huggingface_hub import notebook_login\n",
    "\n",
    "# notebook_login()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load ELI5 dataset"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Start by loading a smaller subset of the r/askscience subset of the ELI5 dataset from the 🤗 Datasets library.\n",
    " This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# from datasets import load_dataset\n",
    "\n",
    "# eli5 = load_dataset(\"eli5\", split=\"train_asks[:5000]\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e5c92a52c290468496943cb8023e4479",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Generating train split: 0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cf14d12614594f51b63d4aa8259d278f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Generating validation split: 0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "# Falcon = load_dataset(\"csv\", data_files=\"FalconData.csv\")\n",
    "Falcon = load_dataset('csv', data_files={\"train\": 'FalconData.csv', \"validation\": 'FalconDataEval.csv'})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Split the dataset's `train_asks` split into a train and test set with the [train_test_split](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.train_test_split) method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Falcon = Falcon.train_test_split(test_size=0.10)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Then take a look at an example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Text': 'Allow me to clarify a genuine fast for amateur online users What exactly is Youtube . com? Youtube . com is probably the most in-demand web site on the web which allow you to view and publish video lessons for free. These are generally submitted by Vimeo members on this video discussing system. Yet another thing YouTube registration is provided for free so anyone can join, however account is not required for watching video lessons. In order to sometimes observe video clips or post your own video lessons so that you can show to your friends, loved ones as well as other Vimeo members. Once you get dependent at viewing video clip, it is possible to phone yourself a YouTuber!\\n- Everything you are unable to upload? Nonetheless there are some regulations or YouTube\\'s regards to use that you should.\\n- Observing a Vimeo movie is really simple, you just need to.\\nObserving a You tube movie is absolutely simple, you just need to variety your best song or television set plan from the research discipline click on \"Research\" option and that\\'s it. It will approach your demand and give you a list of related results. You are able to click on a outcome and this will commence taking part in the recording. youtube downloader\\nAble to click on a outcome and\\nSo, just how to publish your chosen videos? Youtube . com is very popular online video discussing foundation that allows one to publish their video lessons. Uploading a relevant video online is an easy process, just select any video submit through your computer on your YouTube accounts webpage and it will surely begin posting the video. Nonetheless Vimeo will not offer any choice to down load a printed video that you will be seeing, you can easily take note of the site Link so that you can view it later, which seems handy for YouTube users.\\nEverything you cannot upload? Nevertheless there are a few regulations or YouTube\\'s terms of use that you have to comply with, specifically you happen to be unacceptable to upload any restricted content or erotic information. Nevertheless you can use it to showcase your products online.\\nA few regulations or\\nOnline video good quality once you upload Vimeo permits you to post all popular movie formats and produces good quality probable. Whenever you post a youtube video to Youtube . com, you ought to anticipate that high quality will slightly be changed, it is because YouTube optimizes the video for speedier packing. You can even add Hi-def or Hi-def video lessons nevertheless it will take much longer to weight once you observe it. Greater the high quality more slowly movie will load.\\nYou upload Vimeo\\nProbably the most well-known movie web sites online is You tube as well as for certain, you can find videos inside the web site you want to create you everywhere and adding it inside your PSP device might be what you need. However, YouTube video lessons will not be quickly down loadable. You might need a downloader to download the recording through the website and shop it inside your personal computer. video downloader\\nAfter you have saved the recording, it may possibly not certainly be around the preferred format which can be legible along with your Playstation portable. For those who have saved a structure not in mp4, you may want to transform the submit with your Computer in to a Playstation portable-pleasant structure. You may need a video clip converter for this task, and when you have changed the video tutorials, anyone can down load these to your Playstation portable.\\nWith your Playstation portable For those\\nIn accessing, simply link up your Playstation portable to the laptop or computer by means of its cord, use the Universal serial bus setting and download the video lessons and music that you want to bring along.\\nThat will help you look for a converter or a video downloader, specifically if you want to obtain video clips from Vimeo, be involved in forums and discover topics relevant to this. Certainly, you will also find a great deal of PSP movie information that may also assist you in making the best from your gadget and help you learn to see a number of videos on your gadget.\\nAlso find a great deal of PSP\\nYou can even get into membership web sites where PSP enthusiast collect and discuss information and facts and even more importantly, offers you the tools and software program that you will want to save music, videos and media records to your devices and permit you to enjoy the gizmo a lot more. Although these membership internet sites require only a minimum cost, it really is however vital that you are working with and creating dealings in a guaranteed and harmless internet site.\\n- You can even get into membership websites.\\n- One of the more preferred video clip sites on.\\n- Video quality when you post Vimeo enables you.\\n0 thoughts on “The Most Effective and Well-liked you tube downloader6675”'}"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "Falcon['train'][0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Text': 'For some reason, removing motor grease from cotton-poly blend is perceived as one of the more difficult laundry problems out there. The truth is, that there are several methods that you can use to get rid of this type of stain, which are listed here. While some of these methods may seem a little strange, each and every one of them will work. All you need to do is be willing to try it. If you are hesitant about using any of these methods at all, be sure to test them out on a similar piece of fabric to see what the end result will be. If there is any damage to your particular piece of fabric, than do not use the method to happen to have a few white t-shirts, blouses, or button-up shirts, then chances are you know the pain of having to ...Discover More\\nTablecloths are not cheap, and it is always a great idea to protect anything that is expensive. Cleaning tablecloths is ...Discover More\\nWhile it can be annoying to find that your white apparel and linens have turned yellow in the laundry, it no longer needs ...Discover More\\nFREE SERVICE: Get tips like this every week in Cleaning Tips from Tips.Net. Enter your address and click \"Subscribe.\"\\nView most recent newsletter.\\n2015-08-29 08:54:35\\nJune\\nComing from a long line of mechanics, I\\'ve always kept a bottle of LESTOIL around...works GREAT on auto grease, and cooking grease as well, just follow the directions on the bottle.\\nFREE SERVICE: Get tips like this every week in Cleaning Tips from Tips.Net. Enter your address and click \"Subscribe.\"\\n(Your e-mail address is not shared with anyone, ever.)\\nView the most recent newsletter.'}"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "Falcon['validation'][0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "While this may look like a lot, you're only really interested in the `text` field. What's cool about language modeling\n",
    "tasks is you don't need labels (also known as an unsupervised task) because the next word *is* the label."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preprocess"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "cellView": "form",
    "hide_input": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/ma1TrR7gE7I?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# #@title\n",
    "# from IPython.display import HTML\n",
    "\n",
    "# HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/ma1TrR7gE7I?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The next step is to load a DistilGPT2 tokenizer to process the `text` subfield:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
      "  warnings.warn(\n",
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoTokenizer, GPT2TokenizerFast\n",
    "\n",
    "# tokenizer = AutoTokenizer.from_pretrained(\"distilgpt2\")\n",
    "\n",
    "\n",
    "tokenizer = GPT2TokenizerFast.from_pretrained(\"Xenova/gpt-4\")#, cache_dir=cache_dir)\n",
    "tokenizer.pad_token = tokenizer.eos_token"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to\n",
    "extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Text': 'Allow me to clarify a genuine fast for amateur online users What exactly is Youtube . com? Youtube . com is probably the most in-demand web site on the web which allow you to view and publish video lessons for free. These are generally submitted by Vimeo members on this video discussing system. Yet another thing YouTube registration is provided for free so anyone can join, however account is not required for watching video lessons. In order to sometimes observe video clips or post your own video lessons so that you can show to your friends, loved ones as well as other Vimeo members. Once you get dependent at viewing video clip, it is possible to phone yourself a YouTuber!\\n- Everything you are unable to upload? Nonetheless there are some regulations or YouTube\\'s regards to use that you should.\\n- Observing a Vimeo movie is really simple, you just need to.\\nObserving a You tube movie is absolutely simple, you just need to variety your best song or television set plan from the research discipline click on \"Research\" option and that\\'s it. It will approach your demand and give you a list of related results. You are able to click on a outcome and this will commence taking part in the recording. youtube downloader\\nAble to click on a outcome and\\nSo, just how to publish your chosen videos? Youtube . com is very popular online video discussing foundation that allows one to publish their video lessons. Uploading a relevant video online is an easy process, just select any video submit through your computer on your YouTube accounts webpage and it will surely begin posting the video. Nonetheless Vimeo will not offer any choice to down load a printed video that you will be seeing, you can easily take note of the site Link so that you can view it later, which seems handy for YouTube users.\\nEverything you cannot upload? Nevertheless there are a few regulations or YouTube\\'s terms of use that you have to comply with, specifically you happen to be unacceptable to upload any restricted content or erotic information. Nevertheless you can use it to showcase your products online.\\nA few regulations or\\nOnline video good quality once you upload Vimeo permits you to post all popular movie formats and produces good quality probable. Whenever you post a youtube video to Youtube . com, you ought to anticipate that high quality will slightly be changed, it is because YouTube optimizes the video for speedier packing. You can even add Hi-def or Hi-def video lessons nevertheless it will take much longer to weight once you observe it. Greater the high quality more slowly movie will load.\\nYou upload Vimeo\\nProbably the most well-known movie web sites online is You tube as well as for certain, you can find videos inside the web site you want to create you everywhere and adding it inside your PSP device might be what you need. However, YouTube video lessons will not be quickly down loadable. You might need a downloader to download the recording through the website and shop it inside your personal computer. video downloader\\nAfter you have saved the recording, it may possibly not certainly be around the preferred format which can be legible along with your Playstation portable. For those who have saved a structure not in mp4, you may want to transform the submit with your Computer in to a Playstation portable-pleasant structure. You may need a video clip converter for this task, and when you have changed the video tutorials, anyone can down load these to your Playstation portable.\\nWith your Playstation portable For those\\nIn accessing, simply link up your Playstation portable to the laptop or computer by means of its cord, use the Universal serial bus setting and download the video lessons and music that you want to bring along.\\nThat will help you look for a converter or a video downloader, specifically if you want to obtain video clips from Vimeo, be involved in forums and discover topics relevant to this. Certainly, you will also find a great deal of PSP movie information that may also assist you in making the best from your gadget and help you learn to see a number of videos on your gadget.\\nAlso find a great deal of PSP\\nYou can even get into membership web sites where PSP enthusiast collect and discuss information and facts and even more importantly, offers you the tools and software program that you will want to save music, videos and media records to your devices and permit you to enjoy the gizmo a lot more. Although these membership internet sites require only a minimum cost, it really is however vital that you are working with and creating dealings in a guaranteed and harmless internet site.\\n- You can even get into membership websites.\\n- One of the more preferred video clip sites on.\\n- Video quality when you post Vimeo enables you.\\n0 thoughts on “The Most Effective and Well-liked you tube downloader6675”'}"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "Falcon = Falcon.flatten()\n",
    "Falcon[\"train\"][0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Each subfield is now a separate column as indicated by the `answers` prefix, and the `text` field is a list now. Instead\n",
    "of tokenizing each sentence separately, convert the list to a string so you can jointly tokenize them.\n",
    "\n",
    "Here is a first preprocessing function to join the list of strings for each example and tokenize the result:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def preprocess_function(examples):\n",
    "    return tokenizer([\" \".join(x) for x in examples[\"Text\"]])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To apply this preprocessing function over the entire dataset, use the 🤗 Datasets [map](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.map) method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once, and increasing the number of processes with `num_proc`. Remove any columns you don't need:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The OrderedVocab you are attempting to save contains holes for indices [100256, 100261, 100262, 100263, 100266, 100267, 100268, 100269, 100270, 100271, 100272, 100273, 100274, 100275], your vocabulary could be corrupted !\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "51bff46d94664c468064b17d1a8bf1c0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map (num_proc=4):   0%|          | 0/20000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Token indices sequence length is longer than the specified maximum sequence length for this model (8569 > 8192). Running this sequence through the model will result in indexing errors\n",
      "Token indices sequence length is longer than the specified maximum sequence length for this model (14224 > 8192). Running this sequence through the model will result in indexing errors\n",
      "Token indices sequence length is longer than the specified maximum sequence length for this model (15104 > 8192). Running this sequence through the model will result in indexing errors\n",
      "Token indices sequence length is longer than the specified maximum sequence length for this model (32874 > 8192). Running this sequence through the model will result in indexing errors\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The OrderedVocab you are attempting to save contains holes for indices [100256, 100261, 100262, 100263, 100266, 100267, 100268, 100269, 100270, 100271, 100272, 100273, 100274, 100275], your vocabulary could be corrupted !\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5a093fd9868042a9ac76ed1c141711a7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map (num_proc=4):   0%|          | 0/2000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Token indices sequence length is longer than the specified maximum sequence length for this model (8414 > 8192). Running this sequence through the model will result in indexing errors\n",
      "Token indices sequence length is longer than the specified maximum sequence length for this model (11892 > 8192). Running this sequence through the model will result in indexing errors\n",
      "Token indices sequence length is longer than the specified maximum sequence length for this model (22303 > 8192). Running this sequence through the model will result in indexing errors\n",
      "Token indices sequence length is longer than the specified maximum sequence length for this model (12749 > 8192). Running this sequence through the model will result in indexing errors\n"
     ]
    }
   ],
   "source": [
    "tokenized_Falcon = Falcon.map(\n",
    "    preprocess_function,\n",
    "    batched=True,\n",
    "    num_proc=4,\n",
    "    remove_columns=Falcon[\"train\"].column_names,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This dataset contains the token sequences, but some of these are longer than the maximum input length for the model.\n",
    "\n",
    "You can now use a second preprocessing function to\n",
    "- concatenate all the sequences\n",
    "- split the concatenated sequences into shorter chunks defined by `block_size`, which should be both shorter than the maximum input length and short enough for your GPU RAM."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "block_size = 1048\n",
    "\n",
    "\n",
    "def group_texts(examples):\n",
    "    # Concatenate all texts.\n",
    "    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}\n",
    "    total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
    "    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can\n",
    "    # customize this part to your needs.\n",
    "    if total_length >= block_size:\n",
    "        total_length = (total_length // block_size) * block_size\n",
    "    # Split by chunks of block_size.\n",
    "    result = {\n",
    "        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]\n",
    "        for k, t in concatenated_examples.items()\n",
    "    }\n",
    "    result[\"labels\"] = result[\"input_ids\"].copy()\n",
    "    return result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Apply the `group_texts` function over the entire dataset:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6134c09493054ce3940da711dc2e965e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map (num_proc=4):   0%|          | 0/20000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bd3f26e9c76f42f1827aa11aa45416df",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map (num_proc=4):   0%|          | 0/2000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "lm_dataset = tokenized_Falcon.map(group_texts, batched=True, num_proc=4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now create a batch of examples using [DataCollatorForLanguageModeling](https://huggingface.co/docs/transformers/main/en/main_classes/data_collator#transformers.DataCollatorForLanguageModeling). It's more efficient to *dynamically pad* the\n",
    "sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.\n",
    "\n",
    "Use the end-of-sequence token as the padding token and set `mlm=False`. This will use the inputs as labels shifted to the right by one element:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import DataCollatorForLanguageModeling\n",
    "\n",
    "tokenizer.pad_token = tokenizer.eos_token\n",
    "data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<Tip>\n",
    "\n",
    "If you aren't familiar with finetuning a model with the [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer), take a look at the [basic tutorial](https://huggingface.co/docs/transformers/main/en/tasks/../training#train-with-pytorch-trainer)!\n",
    "\n",
    "</Tip>\n",
    "\n",
    "You're ready to start training your model now! Load DistilGPT2 with [AutoModelForCausalLM](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForCausalLM):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f55ae69743a74a08943641e2da03e791",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from transformers import AutoModelForCausalLM, TrainingArguments, Trainer\n",
    "import torch\n",
    "model = AutoModelForCausalLM.from_pretrained(\"tensorplex-labs/pretraining-sn9-7B-5\", torch_dtype=torch.bfloat16)              "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "At this point, only three steps remain:\n",
    "\n",
    "1. Define your training hyperparameters in [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments). The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model).\n",
    "2. Pass the training arguments to [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) along with the model, datasets, and data collator.\n",
    "3. Call [train()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train) to finetune your model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "torch.cuda.empty_cache()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import gc\n",
    "\n",
    "# del tensor_name  # Delete the tensor\n",
    "gc.collect()     # Collect garbage\n",
    "torch.cuda.empty_cache()  # Clear cache"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<torch.autograd.grad_mode.no_grad at 0x7f41880db6d0>"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "torch.no_grad()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "LlamaForCausalLM(\n",
       "  (model): LlamaModel(\n",
       "    (embed_tokens): Embedding(100288, 4096)\n",
       "    (layers): ModuleList(\n",
       "      (0-29): 30 x LlamaDecoderLayer(\n",
       "        (self_attn): LlamaSdpaAttention(\n",
       "          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (rotary_emb): LlamaRotaryEmbedding()\n",
       "        )\n",
       "        (mlp): LlamaMLP(\n",
       "          (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
       "          (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
       "          (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
       "          (act_fn): SiLU()\n",
       "        )\n",
       "        (input_layernorm): LlamaRMSNorm()\n",
       "        (post_attention_layernorm): LlamaRMSNorm()\n",
       "      )\n",
       "    )\n",
       "    (norm): LlamaRMSNorm()\n",
       "  )\n",
       "  (lm_head): Linear(in_features=4096, out_features=100288, bias=False)\n",
       ")"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.to('cuda')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "training_args = TrainingArguments(\n",
    "    output_dir=\"Fine-Tuned-S9\",\n",
    "    bf16=True,\n",
    "    # evaluation_strategy=\"epoch\",\n",
    "    evaluation_strategy=\"steps\",\n",
    "    learning_rate=2e-5,\n",
    "    weight_decay=0.01,\n",
    "    num_train_epochs=1,\n",
    "    per_device_train_batch_size=2,\n",
    "    per_device_eval_batch_size=2,\n",
    "    # lr_scheduler_type = 'cosine',\n",
    "    push_to_hub=False,\n",
    "    save_total_limit = 2\n",
    "    # save_strategy = “no”\n",
    "    load_best_model_at_end=False\n",
    ")\n",
    "\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=lm_dataset[\"train\"],\n",
    "    eval_dataset=lm_dataset[\"validation\"],\n",
    "    # eval_dataset=lm_dataset[\"test\"],\n",
    "    data_collator=data_collator,\n",
    ")\n",
    "\n",
    "# trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Once training is completed, use the [evaluate()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.evaluate) method to evaluate your model and get its perplexity:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Perplexity: 2.21\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "eval_results = trainer.evaluate()\n",
    "print(f\"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Then share your model to the Hub with the [push_to_hub()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.push_to_hub) method so everyone can use your model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# trainer.push_to_hub()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<Tip>\n",
    "\n",
    "For a more in-depth example of how to finetune a model for causal language modeling, take a look at the corresponding\n",
    "[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)\n",
    "or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).\n",
    "\n",
    "</Tip>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Great, now that you've finetuned a model, you can use it for inference!\n",
    "\n",
    "Come up with a prompt you'd like to generate text from:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# prompt = \"Somatic hypermutation allows the immune system to\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The simplest way to try out your finetuned model for inference is to use it in a [pipeline()](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines#transformers.pipeline). Instantiate a `pipeline` for text generation with your model, and pass your text to it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "Could not load model Fine-Tuned-S9/checkpoint-4000 with any of the following classes: (<class 'transformers.models.auto.modeling_auto.AutoModelForCausalLM'>, <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>). See the original errors:\n\nwhile loading with AutoModelForCausalLM, an error is thrown:\nTraceback (most recent call last):\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/pipelines/base.py\", line 283, in infer_framework_load_model\n    model = model_class.from_pretrained(model, **kwargs)\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n    return model_class.from_pretrained(\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\", line 3260, in from_pretrained\n    raise EnvironmentError(\nOSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory Fine-Tuned-S9/checkpoint-4000.\n\nwhile loading with LlamaForCausalLM, an error is thrown:\nTraceback (most recent call last):\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/pipelines/base.py\", line 283, in infer_framework_load_model\n    model = model_class.from_pretrained(model, **kwargs)\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\", line 3260, in from_pretrained\n    raise EnvironmentError(\nOSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory Fine-Tuned-S9/checkpoint-4000.\n\n\n",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[20], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pipeline\n\u001b[1;32m      2\u001b[0m \u001b[38;5;66;03m# checkpoint-4000\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m generator \u001b[38;5;241m=\u001b[39m \u001b[43mpipeline\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtext-generation\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mFine-Tuned-S9/checkpoint-4000\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      4\u001b[0m generator(prompt)\n",
      "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/pipelines/__init__.py:906\u001b[0m, in \u001b[0;36mpipeline\u001b[0;34m(task, model, config, tokenizer, feature_extractor, image_processor, framework, revision, use_fast, token, device, device_map, torch_dtype, trust_remote_code, model_kwargs, pipeline_class, **kwargs)\u001b[0m\n\u001b[1;32m    904\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(model, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m framework \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    905\u001b[0m     model_classes \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m: targeted_task[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m], \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m: targeted_task[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m]}\n\u001b[0;32m--> 906\u001b[0m     framework, model \u001b[38;5;241m=\u001b[39m \u001b[43minfer_framework_load_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    907\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    908\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmodel_classes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_classes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    909\u001b[0m \u001b[43m        \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    910\u001b[0m \u001b[43m        \u001b[49m\u001b[43mframework\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mframework\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    911\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    912\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mhub_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    913\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmodel_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    914\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    916\u001b[0m model_config \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mconfig\n\u001b[1;32m    917\u001b[0m hub_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_commit_hash\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39m_commit_hash\n",
      "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/pipelines/base.py:296\u001b[0m, in \u001b[0;36minfer_framework_load_model\u001b[0;34m(model, config, model_classes, task, framework, **model_kwargs)\u001b[0m\n\u001b[1;32m    294\u001b[0m         \u001b[38;5;28;01mfor\u001b[39;00m class_name, trace \u001b[38;5;129;01min\u001b[39;00m all_traceback\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m    295\u001b[0m             error \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwhile loading with \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mclass_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, an error is thrown:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtrace\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 296\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m    297\u001b[0m             \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCould not load model \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodel\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m with any of the following classes: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mclass_tuple\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. See the original errors:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00merror\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    298\u001b[0m         )\n\u001b[1;32m    300\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m framework \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    301\u001b[0m     framework \u001b[38;5;241m=\u001b[39m infer_framework(model\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n",
      "\u001b[0;31mValueError\u001b[0m: Could not load model Fine-Tuned-S9/checkpoint-4000 with any of the following classes: (<class 'transformers.models.auto.modeling_auto.AutoModelForCausalLM'>, <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>). See the original errors:\n\nwhile loading with AutoModelForCausalLM, an error is thrown:\nTraceback (most recent call last):\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/pipelines/base.py\", line 283, in infer_framework_load_model\n    model = model_class.from_pretrained(model, **kwargs)\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n    return model_class.from_pretrained(\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\", line 3260, in from_pretrained\n    raise EnvironmentError(\nOSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory Fine-Tuned-S9/checkpoint-4000.\n\nwhile loading with LlamaForCausalLM, an error is thrown:\nTraceback (most recent call last):\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/pipelines/base.py\", line 283, in infer_framework_load_model\n    model = model_class.from_pretrained(model, **kwargs)\n  File \"/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\", line 3260, in from_pretrained\n    raise EnvironmentError(\nOSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory Fine-Tuned-S9/checkpoint-4000.\n\n\n"
     ]
    }
   ],
   "source": [
    "# from transformers import pipeline\n",
    "# # checkpoint-4000\n",
    "# generator = pipeline(\"text-generation\", model=\"Fine-Tuned-S9/checkpoint-4000\")\n",
    "# generator(prompt)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Tokenize the text and return the `input_ids` as PyTorch tensors:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    }
   ],
   "source": [
    "# from transformers import AutoTokenizer\n",
    "\n",
    "# tokenizer = AutoTokenizer.from_pretrained(\"Xenova/gpt-4\")\n",
    "# inputs = tokenizer(prompt, return_tensors=\"pt\").input_ids"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use the [generate()](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate) method to generate text.\n",
    "For more details about the different text generation strategies and parameters for controlling generation, check out the [Text generation strategies](https://huggingface.co/docs/transformers/main/en/tasks/../generation_strategies) page."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7ba147780e8548d28a00a655e81e588a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/688 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "04e2f536d4d1492bbb4dcf72abbf2cc3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors.index.json:   0%|          | 0.00/22.5k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "df7e14c799c0457f8422442a065f3b03",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ee74102a34694e6cb57a00210d34cf19",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00001-of-00003.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "978d214714044affb97e1b31ab6deafc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00002-of-00003.safetensors:   0%|          | 0.00/4.98G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0a2fb5b3f2ec4e3e8d7bc9db54a0635e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00003-of-00003.safetensors:   0%|          | 0.00/3.84G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Error while downloading from https://cdn-lfs-us-1.huggingface.co/repos/54/cf/54cf63a091d3be4443d28131b5c3686f6dd17bc8fe13dfd74b30bc4eafc5b3e2/4c4148f267d0c0cb2979c9cf8e60f11fb91770076c28a2a79f4446ea30bff523?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27model-00003-of-00003.safetensors%3B+filename%3D%22model-00003-of-00003.safetensors%22%3B&Expires=1715867899&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcxNTg2Nzg5OX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zLzU0L2NmLzU0Y2Y2M2EwOTFkM2JlNDQ0M2QyODEzMWI1YzM2ODZmNmRkMTdiYzhmZTEzZGZkNzRiMzBiYzRlYWZjNWIzZTIvNGM0MTQ4ZjI2N2QwYzBjYjI5NzljOWNmOGU2MGYxMWZiOTE3NzAwNzZjMjhhMmE3OWY0NDQ2ZWEzMGJmZjUyMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=NRnXWL-gncnyNfcEhT0Xqi7WNbx5rVxELBfBIjnfb3zk7DCNDIqSPi-iNcrXmNkEmINWGbghFy4ifzUqvzNOmm0cJF10hMi%7E6R5DBKRBK0DRGtC2fC72sXzk9ysyJ6mQRSegUeDZy2KZqUL3wzwRC2Xhv8baK%7ENi0FGjUSh0Hmpg7Wgbs2quZRMM7lXqI-y3bkKh7L6OBXnx3W55Mlzzt87CgYLyotXuFIUrQ1W5lN6R3LWZuDvJ0ClLVuSKjTGwBv9MRQYLewybb4yqSmmEDfTkmuCphg2%7EfzNJ53Q2kqMEVC6gRPf67v8NDR9j57zOtoNSc1-SdaCem95aycbC7A__&Key-Pair-Id=KCD77M1F0VK2B: HTTPSConnectionPool(host='cdn-lfs-us-1.huggingface.co', port=443): Read timed out.\n",
      "Trying to resume download...\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "635db10feaa74dff93285752d9e79520",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00003-of-00003.safetensors:  71%|#######   | 2.71G/3.84G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "38e479e6424d4edc8d00795ce084d4c2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "602b879326a44c58bc0909a3b86cd666",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "generation_config.json:   0%|          | 0.00/121 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
      "Setting `pad_token_id` to `eos_token_id`:100257 for open-end generation.\n"
     ]
    }
   ],
   "source": [
    "# from transformers import AutoModelForCausalLM\n",
    "\n",
    "# model = AutoModelForCausalLM.from_pretrained(\"deepnet/SN6-BestLlama\")\n",
    "# outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Decode the generated token ids back into text:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Somatic hypermutation allows the immune system to recognize foreign proteins. \\n - . \\n - \\n 1 . 3 \\n S e t s \\n 0 \\n A c c e p t s \\n A l m o s t \\n 1 \\n C l o s e d \\n T o p i c s \\n P a p e r s \\n 0 \\n P a p e r s \\n B e a r i n g \\n P a g e s \\n 0 \\n P a g e s \\n R e c o']"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# tokenizer.batch_decode(outputs, skip_special_tokens=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Somatic hypermutation allows the immune system to recognize foreign proteins. \\n - . \\n - \\n 1 . 3 \\n S e t s \\n 0 \\n A c c e p t s \\n A l m o s t \\n 1 \\n C l o s e d \\n T o p i c s \\n P a p e r s \\n 0 \\n P a p e r s \\n B e a r i n g \\n P a g e s \\n 0 \\n P a g e s \\n R e c o']"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# tokenizer.batch_decode(outputs, skip_special_tokens=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}