deepali1021 commited on
Commit
f799a57
·
verified ·
1 Parent(s): f941409

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,594 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:20
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: What initiatives were implemented in the past year to improve communication
13
+ between departments?
14
+ sentences:
15
+ - "with other departments. In the past year, we conducted monthly departmental meetings\
16
+ \ and \nestablished communication channels to facilitate information sharing and\
17
+ \ problem-solving. \n \nFare Collection and Fee Structure"
18
+ - "Our fare collection system ensures fair and consistent fee collection from passengers.\
19
+ \ The current fee \nstructure is as follows: \n \nRegular fare: $2.50 \nSenior\
20
+ \ citizens and students: $1.50 \nChildren under 5 years old: Free \nFee collection\
21
+ \ is primarily done through electronic payment methods, such as smart cards and\
22
+ \ \nmobile payment apps. Drivers are responsible for ensuring correct fare collection\
23
+ \ and providing \nreceipts upon request. \nRoute Information and Rules \nOur transportation\
24
+ \ department operates multiple routes within the city. Route information, including\
25
+ \ \nmaps, schedules, and stops, is available on our website and at designated\
26
+ \ information centers."
27
+ - "Our drivers are responsible for operating vehicles safely, following traffic\
28
+ \ rules and regulations. They \nare required to hold a valid driver's license\
29
+ \ and maintain a clean driving record. In the past year, our \ndrivers completed\
30
+ \ over 2,000 hours of driving training to enhance their skills and knowledge.\
31
+ \ \n \nRoute Planning and Optimization \nEfficient route planning is essential\
32
+ \ for timely transportation services. Our department utilizes \nadvanced routing\
33
+ \ software to optimize routes and minimize travel time. In the past year, we reduced\
34
+ \ \nour average route duration by 15% through effective route planning and optimization\
35
+ \ strategies. \n \nCustomer Service"
36
+ - source_sentence: What is the primary focus of the Transportation Department as outlined
37
+ in the manual?
38
+ sentences:
39
+ - "for familiarizing themselves with the latest version of the manual. \n \nConclusion\
40
+ \ \nThank you for reviewing the Transportation Department Policy Manual. Your\
41
+ \ commitment to safety, \ncustomer service, and compliance plays a crucial role\
42
+ \ in our department's success. If you have any \nquestions or need further information,\
43
+ \ please reach out to your supervisor or the department \nmanager. Your dedication\
44
+ \ and professionalism are appreciated."
45
+ - "department. It provides guidelines to ensure safe, efficient, and customer-focused\
46
+ \ transportation \nservices. Please read this manual carefully and consult with\
47
+ \ your supervisor or the department \nmanager if you have any questions or need\
48
+ \ further clarification. \n \nDepartment Overview \nThe Transportation Department\
49
+ \ plays a critical role in providing reliable transportation services to \nour\
50
+ \ customers. Our department consists of 50 drivers, 10 dispatchers, and 5 maintenance\
51
+ \ \ntechnicians. In the past year, we transported over 500,000 passengers across\
52
+ \ various routes, ensuring \ntheir safety and satisfaction. \n \nSafety and Vehicle\
53
+ \ Maintenance \nSafety is our top priority. All vehicles undergo regular inspections\
54
+ \ and maintenance to ensure they"
55
+ - "department. It provides guidelines to ensure safe, efficient, and customer-focused\
56
+ \ transportation \nservices. Please read this manual carefully and consult with\
57
+ \ your supervisor or the department \nmanager if you have any questions or need\
58
+ \ further clarification. \n \nDepartment Overview \nThe Transportation Department\
59
+ \ plays a critical role in providing reliable transportation services to \nour\
60
+ \ customers. Our department consists of 50 drivers, 10 dispatchers, and 5 maintenance\
61
+ \ \ntechnicians. In the past year, we transported over 500,000 passengers across\
62
+ \ various routes, ensuring \ntheir safety and satisfaction. \n \nSafety and Vehicle\
63
+ \ Maintenance \nSafety is our top priority. All vehicles undergo regular inspections\
64
+ \ and maintenance to ensure they"
65
+ - source_sentence: How often were departmental meetings conducted to address information
66
+ sharing and problem-solving?
67
+ sentences:
68
+ - "with other departments. In the past year, we conducted monthly departmental meetings\
69
+ \ and \nestablished communication channels to facilitate information sharing and\
70
+ \ problem-solving. \n \nFare Collection and Fee Structure"
71
+ - "Compliance with local, state, and federal regulations is crucial. Our drivers\
72
+ \ are required to maintain \nup-to-date knowledge of transportation laws and regulations.\
73
+ \ In the past year, we conducted 20 \ncompliance audits to ensure adherence to\
74
+ \ regulatory requirements. \n \nTraining and Development \nContinuous training\
75
+ \ and development are vital for our department's success. In the past year, our\
76
+ \ \ndrivers completed over 100 hours of professional development training, focusing\
77
+ \ on defensive \ndriving, customer service, and emergency preparedness. \n \n\
78
+ Communication and Collaboration \nEffective communication and collaboration are\
79
+ \ essential within the Transportation Department and"
80
+ - "are in optimal condition. In the past year, we conducted 500 vehicle inspections,\
81
+ \ identifying and \naddressing any maintenance issues promptly. Our drivers are\
82
+ \ required to conduct pre-trip and post-\ntrip inspections to ensure the safety\
83
+ \ of the vehicles and passengers. \n \nDriver Responsibilities"
84
+ - source_sentence: How can passengers access route information and schedules for the
85
+ transportation department?
86
+ sentences:
87
+ - "Our fare collection system ensures fair and consistent fee collection from passengers.\
88
+ \ The current fee \nstructure is as follows: \n \nRegular fare: $2.50 \nSenior\
89
+ \ citizens and students: $1.50 \nChildren under 5 years old: Free \nFee collection\
90
+ \ is primarily done through electronic payment methods, such as smart cards and\
91
+ \ \nmobile payment apps. Drivers are responsible for ensuring correct fare collection\
92
+ \ and providing \nreceipts upon request. \nRoute Information and Rules \nOur transportation\
93
+ \ department operates multiple routes within the city. Route information, including\
94
+ \ \nmaps, schedules, and stops, is available on our website and at designated\
95
+ \ information centers."
96
+ - "Passengers are expected to follow the rules and regulations while utilizing our\
97
+ \ transportation \nservices, including: \n \nBoarding and exiting the vehicle\
98
+ \ in an orderly manner. \nYielding seats to elderly, disabled, and pregnant passengers.\
99
+ \ \nKeeping noise levels to a minimum. \nRefraining from eating, drinking, or\
100
+ \ smoking onboard. \nUsing designated safety equipment, such as seat belts, if\
101
+ \ available. \nReporting any suspicious activity or unattended items to the driver.\
102
+ \ \nAmendments to the Policy Manual \nThis policy manual is subject to periodic\
103
+ \ review and amendments. Any updates or changes will be \ncommunicated to employees\
104
+ \ through email or departmental meetings. Employees are responsible"
105
+ - "Passengers are expected to follow the rules and regulations while utilizing our\
106
+ \ transportation \nservices, including: \n \nBoarding and exiting the vehicle\
107
+ \ in an orderly manner. \nYielding seats to elderly, disabled, and pregnant passengers.\
108
+ \ \nKeeping noise levels to a minimum. \nRefraining from eating, drinking, or\
109
+ \ smoking onboard. \nUsing designated safety equipment, such as seat belts, if\
110
+ \ available. \nReporting any suspicious activity or unattended items to the driver.\
111
+ \ \nAmendments to the Policy Manual \nThis policy manual is subject to periodic\
112
+ \ review and amendments. Any updates or changes will be \ncommunicated to employees\
113
+ \ through email or departmental meetings. Employees are responsible"
114
+ - source_sentence: Who should you contact if you have questions or need further information
115
+ regarding the Transportation Department Policy Manual?
116
+ sentences:
117
+ - "Transportation Department Policy Manual \n \nTable of Contents: \n \n• \nIntroduction\
118
+ \ \n• \nDepartment Overview \n• \nSafety and Vehicle Maintenance \n• \nDriver\
119
+ \ Responsibilities \n• \nRoute Planning and Optimization \n• \nCustomer Service\
120
+ \ \n• \nIncident Reporting and Investigation \n• \nCompliance with Regulations\
121
+ \ \n• \nTraining and Development \n• \nCommunication and Collaboration \n• \n\
122
+ Fare Collection and Fee Structure \n• \nRoute Information and Rules \n• \nAmendments\
123
+ \ to the Policy Manual \n• \nConclusion \nIntroduction \nWelcome to the Transportation\
124
+ \ Department Policy Manual! This manual serves as a comprehensive \nguide to the\
125
+ \ policies, procedures, and expectations for employees working in the transportation"
126
+ - "Compliance with local, state, and federal regulations is crucial. Our drivers\
127
+ \ are required to maintain \nup-to-date knowledge of transportation laws and regulations.\
128
+ \ In the past year, we conducted 20 \ncompliance audits to ensure adherence to\
129
+ \ regulatory requirements. \n \nTraining and Development \nContinuous training\
130
+ \ and development are vital for our department's success. In the past year, our\
131
+ \ \ndrivers completed over 100 hours of professional development training, focusing\
132
+ \ on defensive \ndriving, customer service, and emergency preparedness. \n \n\
133
+ Communication and Collaboration \nEffective communication and collaboration are\
134
+ \ essential within the Transportation Department and"
135
+ - "for familiarizing themselves with the latest version of the manual. \n \nConclusion\
136
+ \ \nThank you for reviewing the Transportation Department Policy Manual. Your\
137
+ \ commitment to safety, \ncustomer service, and compliance plays a crucial role\
138
+ \ in our department's success. If you have any \nquestions or need further information,\
139
+ \ please reach out to your supervisor or the department \nmanager. Your dedication\
140
+ \ and professionalism are appreciated."
141
+ pipeline_tag: sentence-similarity
142
+ library_name: sentence-transformers
143
+ metrics:
144
+ - cosine_accuracy@1
145
+ - cosine_accuracy@3
146
+ - cosine_accuracy@5
147
+ - cosine_accuracy@10
148
+ - cosine_precision@1
149
+ - cosine_precision@3
150
+ - cosine_precision@5
151
+ - cosine_precision@10
152
+ - cosine_recall@1
153
+ - cosine_recall@3
154
+ - cosine_recall@5
155
+ - cosine_recall@10
156
+ - cosine_ndcg@10
157
+ - cosine_mrr@10
158
+ - cosine_map@100
159
+ model-index:
160
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
161
+ results:
162
+ - task:
163
+ type: information-retrieval
164
+ name: Information Retrieval
165
+ dataset:
166
+ name: Unknown
167
+ type: unknown
168
+ metrics:
169
+ - type: cosine_accuracy@1
170
+ value: 0.9375
171
+ name: Cosine Accuracy@1
172
+ - type: cosine_accuracy@3
173
+ value: 0.9791666666666666
174
+ name: Cosine Accuracy@3
175
+ - type: cosine_accuracy@5
176
+ value: 1.0
177
+ name: Cosine Accuracy@5
178
+ - type: cosine_accuracy@10
179
+ value: 1.0
180
+ name: Cosine Accuracy@10
181
+ - type: cosine_precision@1
182
+ value: 0.9375
183
+ name: Cosine Precision@1
184
+ - type: cosine_precision@3
185
+ value: 0.32638888888888884
186
+ name: Cosine Precision@3
187
+ - type: cosine_precision@5
188
+ value: 0.19999999999999998
189
+ name: Cosine Precision@5
190
+ - type: cosine_precision@10
191
+ value: 0.09999999999999999
192
+ name: Cosine Precision@10
193
+ - type: cosine_recall@1
194
+ value: 0.9375
195
+ name: Cosine Recall@1
196
+ - type: cosine_recall@3
197
+ value: 0.9791666666666666
198
+ name: Cosine Recall@3
199
+ - type: cosine_recall@5
200
+ value: 1.0
201
+ name: Cosine Recall@5
202
+ - type: cosine_recall@10
203
+ value: 1.0
204
+ name: Cosine Recall@10
205
+ - type: cosine_ndcg@10
206
+ value: 0.971848173216197
207
+ name: Cosine Ndcg@10
208
+ - type: cosine_mrr@10
209
+ value: 0.9625
210
+ name: Cosine Mrr@10
211
+ - type: cosine_map@100
212
+ value: 0.9625
213
+ name: Cosine Map@100
214
+ ---
215
+
216
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
217
+
218
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
219
+
220
+ ## Model Details
221
+
222
+ ### Model Description
223
+ - **Model Type:** Sentence Transformer
224
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
225
+ - **Maximum Sequence Length:** 512 tokens
226
+ - **Output Dimensionality:** 1024 dimensions
227
+ - **Similarity Function:** Cosine Similarity
228
+ <!-- - **Training Dataset:** Unknown -->
229
+ <!-- - **Language:** Unknown -->
230
+ <!-- - **License:** Unknown -->
231
+
232
+ ### Model Sources
233
+
234
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
235
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
236
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
237
+
238
+ ### Full Model Architecture
239
+
240
+ ```
241
+ SentenceTransformer(
242
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
243
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
244
+ (2): Normalize()
245
+ )
246
+ ```
247
+
248
+ ## Usage
249
+
250
+ ### Direct Usage (Sentence Transformers)
251
+
252
+ First install the Sentence Transformers library:
253
+
254
+ ```bash
255
+ pip install -U sentence-transformers
256
+ ```
257
+
258
+ Then you can load this model and run inference.
259
+ ```python
260
+ from sentence_transformers import SentenceTransformer
261
+
262
+ # Download from the 🤗 Hub
263
+ model = SentenceTransformer("deepali1021/finetuned_arctic_ft")
264
+ # Run inference
265
+ sentences = [
266
+ 'Who should you contact if you have questions or need further information regarding the Transportation Department Policy Manual?',
267
+ "for familiarizing themselves with the latest version of the manual. \n \nConclusion \nThank you for reviewing the Transportation Department Policy Manual. Your commitment to safety, \ncustomer service, and compliance plays a crucial role in our department's success. If you have any \nquestions or need further information, please reach out to your supervisor or the department \nmanager. Your dedication and professionalism are appreciated.",
268
+ 'Transportation Department Policy Manual \n \nTable of Contents: \n \n• \nIntroduction \n• \nDepartment Overview \n• \nSafety and Vehicle Maintenance \n• \nDriver Responsibilities \n• \nRoute Planning and Optimization \n• \nCustomer Service \n• \nIncident Reporting and Investigation \n• \nCompliance with Regulations \n• \nTraining and Development \n• \nCommunication and Collaboration \n• \nFare Collection and Fee Structure \n• \nRoute Information and Rules \n• \nAmendments to the Policy Manual \n• \nConclusion \nIntroduction \nWelcome to the Transportation Department Policy Manual! This manual serves as a comprehensive \nguide to the policies, procedures, and expectations for employees working in the transportation',
269
+ ]
270
+ embeddings = model.encode(sentences)
271
+ print(embeddings.shape)
272
+ # [3, 1024]
273
+
274
+ # Get the similarity scores for the embeddings
275
+ similarities = model.similarity(embeddings, embeddings)
276
+ print(similarities.shape)
277
+ # [3, 3]
278
+ ```
279
+
280
+ <!--
281
+ ### Direct Usage (Transformers)
282
+
283
+ <details><summary>Click to see the direct usage in Transformers</summary>
284
+
285
+ </details>
286
+ -->
287
+
288
+ <!--
289
+ ### Downstream Usage (Sentence Transformers)
290
+
291
+ You can finetune this model on your own dataset.
292
+
293
+ <details><summary>Click to expand</summary>
294
+
295
+ </details>
296
+ -->
297
+
298
+ <!--
299
+ ### Out-of-Scope Use
300
+
301
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
302
+ -->
303
+
304
+ ## Evaluation
305
+
306
+ ### Metrics
307
+
308
+ #### Information Retrieval
309
+
310
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
311
+
312
+ | Metric | Value |
313
+ |:--------------------|:-----------|
314
+ | cosine_accuracy@1 | 0.9375 |
315
+ | cosine_accuracy@3 | 0.9792 |
316
+ | cosine_accuracy@5 | 1.0 |
317
+ | cosine_accuracy@10 | 1.0 |
318
+ | cosine_precision@1 | 0.9375 |
319
+ | cosine_precision@3 | 0.3264 |
320
+ | cosine_precision@5 | 0.2 |
321
+ | cosine_precision@10 | 0.1 |
322
+ | cosine_recall@1 | 0.9375 |
323
+ | cosine_recall@3 | 0.9792 |
324
+ | cosine_recall@5 | 1.0 |
325
+ | cosine_recall@10 | 1.0 |
326
+ | **cosine_ndcg@10** | **0.9718** |
327
+ | cosine_mrr@10 | 0.9625 |
328
+ | cosine_map@100 | 0.9625 |
329
+
330
+ <!--
331
+ ## Bias, Risks and Limitations
332
+
333
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
334
+ -->
335
+
336
+ <!--
337
+ ### Recommendations
338
+
339
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
340
+ -->
341
+
342
+ ## Training Details
343
+
344
+ ### Training Dataset
345
+
346
+ #### Unnamed Dataset
347
+
348
+ * Size: 20 training samples
349
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
350
+ * Approximate statistics based on the first 20 samples:
351
+ | | sentence_0 | sentence_1 |
352
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
353
+ | type | string | string |
354
+ | details | <ul><li>min: 12 tokens</li><li>mean: 16.3 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 34 tokens</li><li>mean: 95.1 tokens</li><li>max: 122 tokens</li></ul> |
355
+ * Samples:
356
+ | sentence_0 | sentence_1 |
357
+ |:---------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
358
+ | <code>What topics are covered in the Transportation Department Policy Manual?</code> | <code>Transportation Department Policy Manual <br> <br>Table of Contents: <br> <br>• <br>Introduction <br>• <br>Department Overview <br>• <br>Safety and Vehicle Maintenance <br>• <br>Driver Responsibilities <br>• <br>Route Planning and Optimization <br>• <br>Customer Service <br>• <br>Incident Reporting and Investigation <br>• <br>Compliance with Regulations <br>• <br>Training and Development <br>• <br>Communication and Collaboration <br>• <br>Fare Collection and Fee Structure <br>• <br>Route Information and Rules <br>• <br>Amendments to the Policy Manual <br>• <br>Conclusion <br>Introduction <br>Welcome to the Transportation Department Policy Manual! This manual serves as a comprehensive <br>guide to the policies, procedures, and expectations for employees working in the transportation</code> |
359
+ | <code>What is the purpose of the Transportation Department Policy Manual?</code> | <code>Transportation Department Policy Manual <br> <br>Table of Contents: <br> <br>• <br>Introduction <br>• <br>Department Overview <br>• <br>Safety and Vehicle Maintenance <br>• <br>Driver Responsibilities <br>• <br>Route Planning and Optimization <br>• <br>Customer Service <br>• <br>Incident Reporting and Investigation <br>• <br>Compliance with Regulations <br>• <br>Training and Development <br>• <br>Communication and Collaboration <br>• <br>Fare Collection and Fee Structure <br>• <br>Route Information and Rules <br>• <br>Amendments to the Policy Manual <br>• <br>Conclusion <br>Introduction <br>Welcome to the Transportation Department Policy Manual! This manual serves as a comprehensive <br>guide to the policies, procedures, and expectations for employees working in the transportation</code> |
360
+ | <code>What is the primary focus of the Transportation Department as outlined in the manual?</code> | <code>department. It provides guidelines to ensure safe, efficient, and customer-focused transportation <br>services. Please read this manual carefully and consult with your supervisor or the department <br>manager if you have any questions or need further clarification. <br> <br>Department Overview <br>The Transportation Department plays a critical role in providing reliable transportation services to <br>our customers. Our department consists of 50 drivers, 10 dispatchers, and 5 maintenance <br>technicians. In the past year, we transported over 500,000 passengers across various routes, ensuring <br>their safety and satisfaction. <br> <br>Safety and Vehicle Maintenance <br>Safety is our top priority. All vehicles undergo regular inspections and maintenance to ensure they</code> |
361
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
362
+ ```json
363
+ {
364
+ "loss": "MultipleNegativesRankingLoss",
365
+ "matryoshka_dims": [
366
+ 768,
367
+ 512,
368
+ 256,
369
+ 128,
370
+ 64
371
+ ],
372
+ "matryoshka_weights": [
373
+ 1,
374
+ 1,
375
+ 1,
376
+ 1,
377
+ 1
378
+ ],
379
+ "n_dims_per_step": -1
380
+ }
381
+ ```
382
+
383
+ ### Training Hyperparameters
384
+ #### Non-Default Hyperparameters
385
+
386
+ - `eval_strategy`: steps
387
+ - `per_device_train_batch_size`: 10
388
+ - `per_device_eval_batch_size`: 10
389
+ - `num_train_epochs`: 10
390
+ - `multi_dataset_batch_sampler`: round_robin
391
+
392
+ #### All Hyperparameters
393
+ <details><summary>Click to expand</summary>
394
+
395
+ - `overwrite_output_dir`: False
396
+ - `do_predict`: False
397
+ - `eval_strategy`: steps
398
+ - `prediction_loss_only`: True
399
+ - `per_device_train_batch_size`: 10
400
+ - `per_device_eval_batch_size`: 10
401
+ - `per_gpu_train_batch_size`: None
402
+ - `per_gpu_eval_batch_size`: None
403
+ - `gradient_accumulation_steps`: 1
404
+ - `eval_accumulation_steps`: None
405
+ - `torch_empty_cache_steps`: None
406
+ - `learning_rate`: 5e-05
407
+ - `weight_decay`: 0.0
408
+ - `adam_beta1`: 0.9
409
+ - `adam_beta2`: 0.999
410
+ - `adam_epsilon`: 1e-08
411
+ - `max_grad_norm`: 1
412
+ - `num_train_epochs`: 10
413
+ - `max_steps`: -1
414
+ - `lr_scheduler_type`: linear
415
+ - `lr_scheduler_kwargs`: {}
416
+ - `warmup_ratio`: 0.0
417
+ - `warmup_steps`: 0
418
+ - `log_level`: passive
419
+ - `log_level_replica`: warning
420
+ - `log_on_each_node`: True
421
+ - `logging_nan_inf_filter`: True
422
+ - `save_safetensors`: True
423
+ - `save_on_each_node`: False
424
+ - `save_only_model`: False
425
+ - `restore_callback_states_from_checkpoint`: False
426
+ - `no_cuda`: False
427
+ - `use_cpu`: False
428
+ - `use_mps_device`: False
429
+ - `seed`: 42
430
+ - `data_seed`: None
431
+ - `jit_mode_eval`: False
432
+ - `use_ipex`: False
433
+ - `bf16`: False
434
+ - `fp16`: False
435
+ - `fp16_opt_level`: O1
436
+ - `half_precision_backend`: auto
437
+ - `bf16_full_eval`: False
438
+ - `fp16_full_eval`: False
439
+ - `tf32`: None
440
+ - `local_rank`: 0
441
+ - `ddp_backend`: None
442
+ - `tpu_num_cores`: None
443
+ - `tpu_metrics_debug`: False
444
+ - `debug`: []
445
+ - `dataloader_drop_last`: False
446
+ - `dataloader_num_workers`: 0
447
+ - `dataloader_prefetch_factor`: None
448
+ - `past_index`: -1
449
+ - `disable_tqdm`: False
450
+ - `remove_unused_columns`: True
451
+ - `label_names`: None
452
+ - `load_best_model_at_end`: False
453
+ - `ignore_data_skip`: False
454
+ - `fsdp`: []
455
+ - `fsdp_min_num_params`: 0
456
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
457
+ - `fsdp_transformer_layer_cls_to_wrap`: None
458
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
459
+ - `deepspeed`: None
460
+ - `label_smoothing_factor`: 0.0
461
+ - `optim`: adamw_torch
462
+ - `optim_args`: None
463
+ - `adafactor`: False
464
+ - `group_by_length`: False
465
+ - `length_column_name`: length
466
+ - `ddp_find_unused_parameters`: None
467
+ - `ddp_bucket_cap_mb`: None
468
+ - `ddp_broadcast_buffers`: False
469
+ - `dataloader_pin_memory`: True
470
+ - `dataloader_persistent_workers`: False
471
+ - `skip_memory_metrics`: True
472
+ - `use_legacy_prediction_loop`: False
473
+ - `push_to_hub`: False
474
+ - `resume_from_checkpoint`: None
475
+ - `hub_model_id`: None
476
+ - `hub_strategy`: every_save
477
+ - `hub_private_repo`: None
478
+ - `hub_always_push`: False
479
+ - `gradient_checkpointing`: False
480
+ - `gradient_checkpointing_kwargs`: None
481
+ - `include_inputs_for_metrics`: False
482
+ - `include_for_metrics`: []
483
+ - `eval_do_concat_batches`: True
484
+ - `fp16_backend`: auto
485
+ - `push_to_hub_model_id`: None
486
+ - `push_to_hub_organization`: None
487
+ - `mp_parameters`:
488
+ - `auto_find_batch_size`: False
489
+ - `full_determinism`: False
490
+ - `torchdynamo`: None
491
+ - `ray_scope`: last
492
+ - `ddp_timeout`: 1800
493
+ - `torch_compile`: False
494
+ - `torch_compile_backend`: None
495
+ - `torch_compile_mode`: None
496
+ - `dispatch_batches`: None
497
+ - `split_batches`: None
498
+ - `include_tokens_per_second`: False
499
+ - `include_num_input_tokens_seen`: False
500
+ - `neftune_noise_alpha`: None
501
+ - `optim_target_modules`: None
502
+ - `batch_eval_metrics`: False
503
+ - `eval_on_start`: False
504
+ - `use_liger_kernel`: False
505
+ - `eval_use_gather_object`: False
506
+ - `average_tokens_across_devices`: False
507
+ - `prompts`: None
508
+ - `batch_sampler`: batch_sampler
509
+ - `multi_dataset_batch_sampler`: round_robin
510
+
511
+ </details>
512
+
513
+ ### Training Logs
514
+ | Epoch | Step | cosine_ndcg@10 |
515
+ |:-----:|:----:|:--------------:|
516
+ | 1.0 | 2 | 0.8107 |
517
+ | 2.0 | 4 | 0.9292 |
518
+ | 3.0 | 6 | 0.9623 |
519
+ | 4.0 | 8 | 0.9712 |
520
+ | 5.0 | 10 | 0.9642 |
521
+ | 6.0 | 12 | 0.9642 |
522
+ | 7.0 | 14 | 0.9642 |
523
+ | 8.0 | 16 | 0.9642 |
524
+ | 9.0 | 18 | 0.9718 |
525
+ | 10.0 | 20 | 0.9718 |
526
+
527
+
528
+ ### Framework Versions
529
+ - Python: 3.11.11
530
+ - Sentence Transformers: 3.4.1
531
+ - Transformers: 4.48.3
532
+ - PyTorch: 2.5.1+cu124
533
+ - Accelerate: 1.3.0
534
+ - Datasets: 3.3.2
535
+ - Tokenizers: 0.21.0
536
+
537
+ ## Citation
538
+
539
+ ### BibTeX
540
+
541
+ #### Sentence Transformers
542
+ ```bibtex
543
+ @inproceedings{reimers-2019-sentence-bert,
544
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
545
+ author = "Reimers, Nils and Gurevych, Iryna",
546
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
547
+ month = "11",
548
+ year = "2019",
549
+ publisher = "Association for Computational Linguistics",
550
+ url = "https://arxiv.org/abs/1908.10084",
551
+ }
552
+ ```
553
+
554
+ #### MatryoshkaLoss
555
+ ```bibtex
556
+ @misc{kusupati2024matryoshka,
557
+ title={Matryoshka Representation Learning},
558
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
559
+ year={2024},
560
+ eprint={2205.13147},
561
+ archivePrefix={arXiv},
562
+ primaryClass={cs.LG}
563
+ }
564
+ ```
565
+
566
+ #### MultipleNegativesRankingLoss
567
+ ```bibtex
568
+ @misc{henderson2017efficient,
569
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
570
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
571
+ year={2017},
572
+ eprint={1705.00652},
573
+ archivePrefix={arXiv},
574
+ primaryClass={cs.CL}
575
+ }
576
+ ```
577
+
578
+ <!--
579
+ ## Glossary
580
+
581
+ *Clearly define terms in order to be accessible across audiences.*
582
+ -->
583
+
584
+ <!--
585
+ ## Model Card Authors
586
+
587
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
588
+ -->
589
+
590
+ <!--
591
+ ## Model Card Contact
592
+
593
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
594
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:845f9ba9f50e1cd73ca0bed85fd58f959baa4200d644da91f50799ed3b34aadf
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff