--- license: apache-2.0 datasets: - tatsu-lab/alpaca --- ## 🍮 🦙 Flan-Alpaca: Instruction Tuning from Humans and Machines 📣 Curious to know the performance of 🍮 🦙 **Flan-Alpaca** on large-scale LLM evaluation benchmark, **InstructEval**? Read our paper [https://arxiv.org/pdf/2306.04757.pdf](https://arxiv.org/pdf/2306.04757.pdf). We evaluated more than 10 open-source instruction-tuned LLMs belonging to various LLM families including Pythia, LLaMA, T5, UL2, OPT, and Mosaic. Codes and datasets: [https://github.com/declare-lab/instruct-eval](https://github.com/declare-lab/instruct-eval) Our [repository](https://github.com/declare-lab/flan-alpaca) contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416). The pretrained models and demos are available on HuggingFace 🤗 : | Model | Parameters | Training GPUs | |---------------------------------------------------------------------------|------------|-----------------| | [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base) | 220M | 1x A6000 | | [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large) | 770M | 1x A6000 | | [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl) | 3B | 1x A6000 | | [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl) | 11B | 4x A6000 (FSDP) | ### Why? [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily. Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data. The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model. However, the original implementation is less accessible due to licensing constraints of the underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model. Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416). ### Usage This uses Huggingface PEFT library for Parameter Efficient Fine Tuning ``` import torch from peft import PeftModel from transformers import GenerationConfig from transformers import AutoTokenizer, AutoModelForSeq2SeqLM BASE_MODEL = "google/flan-t5-xl" LORA_WEIGHTS = "declare-lab/flan-alpaca-xl-lora" TEMPERATURE = 1.0 TOP_P = 0.75 TOP_K = 40 NUM_BEAMS = 4 MAX_NEW_TOKENS = 128 if torch.cuda.is_available(): device = "cuda" else: device = "cpu" if device == "cuda": model = AutoModelForSeq2SeqLM.from_pretrained( BASE_MODEL, device_map="auto", ) model = PeftModel.from_pretrained(model, LORA_WEIGHTS, force_download=True) else: model = AutoModelForSeq2SeqLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) prompt = "Write a short email to show that 42 is the optimal seed for training neural networks" tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) input_ids = tokenizer(prompt, return_tensors="pt").input_ids input_ids = input_ids.to(device) generation_config = GenerationConfig( temperature=TEMPERATURE, top_p=TOP_P, top_k=TOP_K, num_beams=NUM_BEAMS, ) generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=MAX_NEW_TOKENS, ) print(tokenizer.batch_decode(generation_output.sequences)[0]) ```