File size: 5,532 Bytes
0f93c66
 
 
 
 
688f7bd
1eb3cd1
 
2dfe562
1d764c0
688f7bd
 
 
1d764c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
094f8e5
 
1d764c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f93c66
 
1d764c0
 
 
0f93c66
1d764c0
0f93c66
1d764c0
 
 
0f93c66
1d764c0
0f93c66
1d764c0
26cfb21
1d764c0
0f93c66
1d764c0
 
0f93c66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d764c0
0f93c66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d764c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
library_name: transformers
tags: []
---

# ***Mol-MoE***: Training Preference-Guided Routers for Molecule Generation
*Diego Calanzone (1, 2), Pierluca D'Oro (2), Pierre-Luc Bacon (1, 2)* <br>
*(1) Universite de Montreal, (2) Mila Quebec AI Institute* <br>
**arXiv**: https://arxiv.org/abs/2502.05633

**Abstract**: Recent advances in language models have enabled framing molecule generation as sequence modeling. However, existing approaches often rely on single-objective reinforcement learning, limiting their applicability to real-world drug design, where multiple competing properties must be optimized. Traditional multi-objective reinforcement learning (MORL) methods require costly retraining for each new objective combination, making rapid exploration of trade-offs impractical. To overcome these limitations, we introduce Mol-MoE, a mixture-of-experts (MoE) architecture that enables efficient test-time steering of molecule generation without retraining. Central to our approach is a preference-based router training objective that incentivizes the router to combine experts in a way that aligns with user-specified trade-offs. This provides improved flexibility in exploring the chemical property space at test time, facilitating rapid trade-off exploration. Benchmarking against state-of-the-art methods, we show that Mol-MoE achieves superior sample quality and steerability.



## How to use this model
This LM is fine-tuned to generate molecules in the SMILES format wrt. desired properties.
For unconditioned SMILES generation, use the BOS token `<s>`. For conditioned generation, you can target the following properties: `JNK3, DRD2, GSK3B, CYP2D6, CYP2C19`.
```
prompt: <JNK3=0.3><DRD2=0.7><GSK3B=0.2><CYP2D6=0.8><CYP2C19=0.8><s> 
```

An example of the generation pipeline:
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import re

# Setup
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("ddidacus/Mol-MoE-6x1b")
model = AutoModelForCausalLM.from_pretrained("ddidacus/Mol-MoE-6x1b")
generation_kwargs = {
    "max_new_tokens": 128,
    "min_length": -1,
    "top_k": 0.0,
    "top_p": 0.9,
    "do_sample": True,
    "pad_token_id": tokenizer.eos_token_id,
    "temperature": 1.0
}

# Inference
query = "<JNK3=0.3><DRD2=0.7><GSK3B=0.2><CYP2D6=0.8><CYP2C19=0.8><s>"
toks = tokenizer([query], return_tensors="pt")["input_ids"].to(device)
output = model.generate(toks, **generation_kwargs)
output = tokenizer.batch_decode(output)

# Parsing
filter = r'<s>(.*?)</s>'
molecule = re.findall(filter, output[0], re.DOTALL)
```

### Model Description
This model is a fine-tuned version of LLaMa 3.2 1B through two stages:
1. Fine-tuning on ~3.5M molecules extracted from: ZINC 250K, MOSES, CHEMBL
2. RLHF-tuning using RLOO on 5 distinct reward functions from PyTDC [1]

The six LLaMa models trained in (1) and (2) are merged into mixtral blocks using MergeKit [2].

- **Developed by:** Diego Calanzone ([email protected])
- **Model type:** Mixtral Mixture of Experts
- **Finetuned from model [optional]:** LLaMA 3.2 1B

Read the paper for further details.

### Sources
[1] https://tdcommons.ai/single_pred_tasks/overview <br>
[2] https://github.com/arcee-ai/mergekit

<!--
### Model Sources [optional]

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

### Direct Use

[More Information Needed]

### Downstream Use [optional]

[More Information Needed]

### Out-of-Scope Use

[More Information Needed]

## Bias, Risks, and Limitations

[More Information Needed]

### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

[More Information Needed]

### Training Procedure

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] 

#### Speeds, Sizes, Times [optional]

[More Information Needed]

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

[More Information Needed]

#### Factors

[More Information Needed]

#### Metrics

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

[More Information Needed]

## Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed] -->