File size: 5,532 Bytes
0f93c66 688f7bd 1eb3cd1 2dfe562 1d764c0 688f7bd 1d764c0 094f8e5 1d764c0 0f93c66 1d764c0 0f93c66 1d764c0 0f93c66 1d764c0 0f93c66 1d764c0 0f93c66 1d764c0 26cfb21 1d764c0 0f93c66 1d764c0 0f93c66 1d764c0 0f93c66 1d764c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
library_name: transformers
tags: []
---
# ***Mol-MoE***: Training Preference-Guided Routers for Molecule Generation
*Diego Calanzone (1, 2), Pierluca D'Oro (2), Pierre-Luc Bacon (1, 2)* <br>
*(1) Universite de Montreal, (2) Mila Quebec AI Institute* <br>
**arXiv**: https://arxiv.org/abs/2502.05633
**Abstract**: Recent advances in language models have enabled framing molecule generation as sequence modeling. However, existing approaches often rely on single-objective reinforcement learning, limiting their applicability to real-world drug design, where multiple competing properties must be optimized. Traditional multi-objective reinforcement learning (MORL) methods require costly retraining for each new objective combination, making rapid exploration of trade-offs impractical. To overcome these limitations, we introduce Mol-MoE, a mixture-of-experts (MoE) architecture that enables efficient test-time steering of molecule generation without retraining. Central to our approach is a preference-based router training objective that incentivizes the router to combine experts in a way that aligns with user-specified trade-offs. This provides improved flexibility in exploring the chemical property space at test time, facilitating rapid trade-off exploration. Benchmarking against state-of-the-art methods, we show that Mol-MoE achieves superior sample quality and steerability.
## How to use this model
This LM is fine-tuned to generate molecules in the SMILES format wrt. desired properties.
For unconditioned SMILES generation, use the BOS token `<s>`. For conditioned generation, you can target the following properties: `JNK3, DRD2, GSK3B, CYP2D6, CYP2C19`.
```
prompt: <JNK3=0.3><DRD2=0.7><GSK3B=0.2><CYP2D6=0.8><CYP2C19=0.8><s>
```
An example of the generation pipeline:
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
# Setup
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("ddidacus/Mol-MoE-6x1b")
model = AutoModelForCausalLM.from_pretrained("ddidacus/Mol-MoE-6x1b")
generation_kwargs = {
"max_new_tokens": 128,
"min_length": -1,
"top_k": 0.0,
"top_p": 0.9,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"temperature": 1.0
}
# Inference
query = "<JNK3=0.3><DRD2=0.7><GSK3B=0.2><CYP2D6=0.8><CYP2C19=0.8><s>"
toks = tokenizer([query], return_tensors="pt")["input_ids"].to(device)
output = model.generate(toks, **generation_kwargs)
output = tokenizer.batch_decode(output)
# Parsing
filter = r'<s>(.*?)</s>'
molecule = re.findall(filter, output[0], re.DOTALL)
```
### Model Description
This model is a fine-tuned version of LLaMa 3.2 1B through two stages:
1. Fine-tuning on ~3.5M molecules extracted from: ZINC 250K, MOSES, CHEMBL
2. RLHF-tuning using RLOO on 5 distinct reward functions from PyTDC [1]
The six LLaMa models trained in (1) and (2) are merged into mixtral blocks using MergeKit [2].
- **Developed by:** Diego Calanzone ([email protected])
- **Model type:** Mixtral Mixture of Experts
- **Finetuned from model [optional]:** LLaMA 3.2 1B
Read the paper for further details.
### Sources
[1] https://tdcommons.ai/single_pred_tasks/overview <br>
[2] https://github.com/arcee-ai/mergekit
<!--
### Model Sources [optional]
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
[More Information Needed]
### Downstream Use [optional]
[More Information Needed]
### Out-of-Scope Use
[More Information Needed]
## Bias, Risks, and Limitations
[More Information Needed]
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
### Training Procedure
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed]
#### Speeds, Sizes, Times [optional]
[More Information Needed]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
[More Information Needed]
#### Factors
[More Information Needed]
#### Metrics
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
[More Information Needed]
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] --> |