dbaibak commited on
Commit
ced7343
·
1 Parent(s): 97b0e59

PPO / LunarLander-v2

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 270.81 +/- 17.74
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 257.58 +/- 40.85
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe23bd6daf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe23bd6db80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe23bd6dc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe23bd6dca0>", "_build": "<function ActorCriticPolicy._build at 0x7fe23bd6dd30>", "forward": "<function ActorCriticPolicy.forward at 0x7fe23bd6ddc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe23bd6de50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe23bd6dee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe23bd6df70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe23bd72040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe23bd720d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe23bd6e1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670424974330590418, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItvXTfxZTcUCUhpRSlIwBbJRL5IwBdJRHQJWyCTEBKcx1fZQoaAZoCWgPQwjVXkTbcWlwQJSGlFKUaBVL52gWR0CVshgQHzH0dX2UKGgGaAloD0MI4lzDDA0QckCUhpRSlGgVS/FoFkdAlbKQ97ngYXV9lChoBmgJaA9DCN1AgXfyE3FAlIaUUpRoFU0kAWgWR0CVso8yeqaPdX2UKGgGaAloD0MIgSbChmc0cUCUhpRSlGgVS+9oFkdAlbOeZG8VYnV9lChoBmgJaA9DCKH18GUiZ29AlIaUUpRoFUv6aBZHQJW0MQe3hGZ1fZQoaAZoCWgPQwgqc/ONqNxxQJSGlFKUaBVNNAFoFkdAlbRD0+TvA3V9lChoBmgJaA9DCJnxttLr13JAlIaUUpRoFU0DAWgWR0CVtGdGRV6vdX2UKGgGaAloD0MICVG+oEUeckCUhpRSlGgVS/VoFkdAlbUUBGQSz3V9lChoBmgJaA9DCEZhF0WPmHFAlIaUUpRoFU0OAWgWR0CVtUUQ04zadX2UKGgGaAloD0MIrVEP0egqckCUhpRSlGgVS/VoFkdAlbWG1+iJwnV9lChoBmgJaA9DCLxBtFb0anNAlIaUUpRoFUvXaBZHQJW12ujh1kl1fZQoaAZoCWgPQwhevYqMDvdwQJSGlFKUaBVNAQFoFkdAlbeb+98JD3V9lChoBmgJaA9DCBh47j1cPG9AlIaUUpRoFUvmaBZHQJW3rgJkXk51fZQoaAZoCWgPQwgCEHf1KkxxQJSGlFKUaBVNHQFoFkdAlbhSKR+z+nV9lChoBmgJaA9DCAdA3NVrtHBAlIaUUpRoFUvwaBZHQJW4YJLM9r51fZQoaAZoCWgPQwgDJnDrLqJyQJSGlFKUaBVL+2gWR0CVuLhMrVe8dX2UKGgGaAloD0MIjGmmex2oYECUhpRSlGgVTegDaBZHQJW5Hru6VdJ1fZQoaAZoCWgPQwg7ONibWLlxQJSGlFKUaBVNCwFoFkdAlbmRqGlANXV9lChoBmgJaA9DCOqvV1hwHHBAlIaUUpRoFU0TAWgWR0CVucyHVPN3dX2UKGgGaAloD0MIyFuufuzfc0CUhpRSlGgVS9poFkdAlboaQzUI9nV9lChoBmgJaA9DCEM7p1mgrnBAlIaUUpRoFUv/aBZHQJW6SHYYixF1fZQoaAZoCWgPQwg8ZwsILfZwQJSGlFKUaBVL/WgWR0CVustA9mpVdX2UKGgGaAloD0MIaxFRTB4nckCUhpRSlGgVTRoBaBZHQJW7cCHRCyB1fZQoaAZoCWgPQwiis8wiVMxxQJSGlFKUaBVL8mgWR0CVu4gs9SuRdX2UKGgGaAloD0MIhZUKKur9ckCUhpRSlGgVS95oFkdAlbumC2+fy3V9lChoBmgJaA9DCK8Hk+LjjHJAlIaUUpRoFUv+aBZHQJW8Cjbi6xx1fZQoaAZoCWgPQwjC+6pcKCtyQJSGlFKUaBVNHwFoFkdAlbxd2X9it3V9lChoBmgJaA9DCGGkF7V7zWxAlIaUUpRoFUvwaBZHQJW9nk8zQ/p1fZQoaAZoCWgPQwibIOo+wKJyQJSGlFKUaBVL3GgWR0CVvcj7hvR7dX2UKGgGaAloD0MIdH6K4wA9cECUhpRSlGgVTQMBaBZHQJW+LKB/Zuh1fZQoaAZoCWgPQwhLkuf6vq9xQJSGlFKUaBVL+WgWR0CVvpf779AHdX2UKGgGaAloD0MIE5uPa0PDcUCUhpRSlGgVS/1oFkdAldrw1m8M/nV9lChoBmgJaA9DCKeWrfWF/HJAlIaUUpRoFUvoaBZHQJXbhVuJk5J1fZQoaAZoCWgPQwiSek/lNC1zQJSGlFKUaBVL1WgWR0CV240btJFtdX2UKGgGaAloD0MIba6a5wjBcUCUhpRSlGgVS95oFkdAlduXCGetjnV9lChoBmgJaA9DCM78ag7Q3nFAlIaUUpRoFU0kAWgWR0CV3G+gUUO/dX2UKGgGaAloD0MI5PbLJyvLckCUhpRSlGgVTRgBaBZHQJXcovYe1a51fZQoaAZoCWgPQwgeU3dlF3RtQJSGlFKUaBVL7mgWR0CV3NsCkoF3dX2UKGgGaAloD0MIA9L+BxjVckCUhpRSlGgVS9JoFkdAldzlmJ3xF3V9lChoBmgJaA9DCIuqX+l89HBAlIaUUpRoFUv+aBZHQJXd77ZWaMJ1fZQoaAZoCWgPQwguHAjJAktvQJSGlFKUaBVL92gWR0CV3fh6By0bdX2UKGgGaAloD0MI3+ALk+nCckCUhpRSlGgVTQEBaBZHQJXepvZRKpV1fZQoaAZoCWgPQwiwdD48S41wQJSGlFKUaBVNAAFoFkdAld8GEXcgyXV9lChoBmgJaA9DCI47pYO173JAlIaUUpRoFUvUaBZHQJXfT7P6bfB1fZQoaAZoCWgPQwjbEyS2O7ZtQJSGlFKUaBVL6GgWR0CV4EDn/1g6dX2UKGgGaAloD0MI0el5N5ZXcUCUhpRSlGgVTQQBaBZHQJXgbc8DB/J1fZQoaAZoCWgPQwgVcxB0tIhwQJSGlFKUaBVNAQFoFkdAleFvL1VYIXV9lChoBmgJaA9DCEm6ZvLNuXBAlIaUUpRoFUvoaBZHQJXh1jYqXnh1fZQoaAZoCWgPQwjNdRppafJyQJSGlFKUaBVNBAFoFkdAleIHTiKiwnV9lChoBmgJaA9DCHbgnBElY3BAlIaUUpRoFUvyaBZHQJXiJxNqQBB1fZQoaAZoCWgPQwhOl8XEJu1wQJSGlFKUaBVL/WgWR0CV4mK3d9DydX2UKGgGaAloD0MIP1dbsb9jc0CUhpRSlGgVS9loFkdAleJ5gCwKSnV9lChoBmgJaA9DCI22KonsOXBAlIaUUpRoFUv0aBZHQJXjaqR2bG51fZQoaAZoCWgPQwjyeFp+IB5zQJSGlFKUaBVNGQFoFkdAleP7y1/lQ3V9lChoBmgJaA9DCB6mfXM/XnJAlIaUUpRoFU0QAWgWR0CV5CERaouPdX2UKGgGaAloD0MImE2AYfneckCUhpRSlGgVS+hoFkdAleQvjXFtK3V9lChoBmgJaA9DCJyiI7m833FAlIaUUpRoFUv7aBZHQJXlWnCO3lV1fZQoaAZoCWgPQwj/CMOA5ZBxQJSGlFKUaBVL7mgWR0CV5atWuHN5dX2UKGgGaAloD0MITz3S4PZkcUCUhpRSlGgVTSYBaBZHQJXlwPqcEvF1fZQoaAZoCWgPQwj3deCckehwQJSGlFKUaBVNAwFoFkdAleXmgFotc3V9lChoBmgJaA9DCPlJtU9HfHJAlIaUUpRoFUvuaBZHQJXmgvPC2tx1fZQoaAZoCWgPQwjue9Rfr8ByQJSGlFKUaBVL/2gWR0CV5xSeRPoFdX2UKGgGaAloD0MIX7cIjLVhckCUhpRSlGgVS+VoFkdAledIBeXzDnV9lChoBmgJaA9DCDAOLh3zk3FAlIaUUpRoFUvgaBZHQJXnvpgTh5x1fZQoaAZoCWgPQwhV+Z6RCMdyQJSGlFKUaBVL6GgWR0CV6Dv/BFd+dX2UKGgGaAloD0MIXr2KjA6/cECUhpRSlGgVS+5oFkdAlehQYUFjeHV9lChoBmgJaA9DCL8OnDPijXFAlIaUUpRoFU0JAWgWR0CV6H3dbgTAdX2UKGgGaAloD0MI4BEVqlvYcUCUhpRSlGgVTQsBaBZHQJXosENe+mF1fZQoaAZoCWgPQwiB7WDE/k1xQJSGlFKUaBVL6WgWR0CV6c6iTMaCdX2UKGgGaAloD0MIQq8/iU+zcUCUhpRSlGgVTRABaBZHQJXqJqVQhwF1fZQoaAZoCWgPQwgTtTS3AqhyQJSGlFKUaBVNBwFoFkdAleq4Glhw2nV9lChoBmgJaA9DCJPgDWmUC3JAlIaUUpRoFU0PAWgWR0CV6rhR64UfdX2UKGgGaAloD0MItmeWBChfcUCUhpRSlGgVS+JoFkdAletFANXo1XV9lChoBmgJaA9DCKkR+pl6+21AlIaUUpRoFUvvaBZHQJXrTOObRWt1fZQoaAZoCWgPQwhxcVRuosFuQJSGlFKUaBVL82gWR0CV68bbUPQOdX2UKGgGaAloD0MIaHVyhuKzcUCUhpRSlGgVTQEBaBZHQJXsR19v0iB1fZQoaAZoCWgPQwgHKXgKuZtxQJSGlFKUaBVL8WgWR0CV7IuyeI2wdX2UKGgGaAloD0MI7bq3IrGPcECUhpRSlGgVS/poFkdAle1jI/7iynV9lChoBmgJaA9DCLd++s8aQXJAlIaUUpRoFUvbaBZHQJXt3cFhXsB1fZQoaAZoCWgPQwieYP917odwQJSGlFKUaBVNEAFoFkdAle5AUDdP+HV9lChoBmgJaA9DCKxY/KbwKXFAlIaUUpRoFU0NAWgWR0CV7ri0v4/NdX2UKGgGaAloD0MIchjMX2HZcECUhpRSlGgVS/ZoFkdAle7nyd4FA3V9lChoBmgJaA9DCJ8dcF1xE3NAlIaUUpRoFU0JAWgWR0CV7zsCT2WZdX2UKGgGaAloD0MII6RuZ59acECUhpRSlGgVS/loFkdAle85zkp7TnV9lChoBmgJaA9DCBjQC3fu/3JAlIaUUpRoFUvmaBZHQJXv1isny/d1fZQoaAZoCWgPQwjNk2sKZKhzQJSGlFKUaBVL+GgWR0CV8Jr+o99udX2UKGgGaAloD0MITkLpC+Etc0CUhpRSlGgVS+ZoFkdAlfCnS8an8HV9lChoBmgJaA9DCL7dkhxwGnJAlIaUUpRoFUvoaBZHQJXwtTm4iHJ1fZQoaAZoCWgPQwikNJvHIedyQJSGlFKUaBVL4WgWR0CV8QjeKsMidX2UKGgGaAloD0MId0zdlV1AckCUhpRSlGgVS+loFkdAlfE4rFwT/XV9lChoBmgJaA9DCIpYxLDD6HFAlIaUUpRoFUv7aBZHQJXyAgTyrgh1fZQoaAZoCWgPQwgBipElsy5yQJSGlFKUaBVL4WgWR0CV8hhysCDFdX2UKGgGaAloD0MIRrWIKGa/ckCUhpRSlGgVS/BoFkdAlfIzuF6Av3V9lChoBmgJaA9DCA3+fjHbEW5AlIaUUpRoFUvgaBZHQJXzkZccENh1fZQoaAZoCWgPQwgBh1ClZohxQJSGlFKUaBVNDwFoFkdAlfQKKk2xZHV9lChoBmgJaA9DCOJZgoxAknBAlIaUUpRoFUvmaBZHQJX0Xw8W9Dh1fZQoaAZoCWgPQwgqOSf2kFRyQJSGlFKUaBVNCwFoFkdAlfRkofCAMHV9lChoBmgJaA9DCPAXsyUrcXFAlIaUUpRoFUvraBZHQJX02aOPvKF1fZQoaAZoCWgPQwgk8IefPwBwQJSGlFKUaBVNAwFoFkdAlfT7AP/aQHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa1f8f5b430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa1f8f5b4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa1f8f5b550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa1f8f5b5e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa1f8f5b670>", "forward": "<function ActorCriticPolicy.forward at 0x7fa1f8f5b700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa1f8f5b790>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa1f8f5b820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa1f8f5b8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa1f8f5b940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa1f8f5b9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa1f8f55810>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAlKYuqwDktdLUOHAce7HrDNtZuWfKumqC4lZa8bdxRabjiHX7ERhJrerd1OFAIrf8/iGIeJ0zOsnnGhp9V1K1yy9BZtWaHDLLmbHY/sdIAX2rPWouZqIp5okLATy5txg8GJqLnMqMKVD1WWbYMsBbNmFa8Qx0LTJ5exwy6Q7I4AIYL+zEYWHqDbUBdXRMYQIcYkWyNNctOrAyqe8cjZOcvFQnXb4xAq/TNI5J+/xvFC3qPuvZ4GlO7QadpHVrXrohcbm+uAjq+DcCiSCQ25t8hA+ltASRMa2cgY97wB32tfXadOCrKyFuHHbsdjQ4SsPecoY452geklnz9bkUpPifTov3J/70ZJpLOXkf+WSTLWzSnriOmQXmK6M41TMzzKi28bmUlLMLtZPJWU3XH+64+WmSAriQPd8uM5mPscd8cC+l3XSJ2QFGWBJAmFcYH2GtcP7tMgJ3ZcS7xtO6dOnjewbJa6LF9y7ospna4t8/0Yf1HvLhy/+PZhx9ysAEd/zFmof2TThKOk2rs4SVvwJM3PSf5wM+dbyUcP/lmvNDCGAKqQlLu1m7ri9q6yi2yTdyrsykfBwUNcgfMj4kQu7hFamxZ+3X7qclNFN85+2fs1AV1wQj5FvMqX0MBWIavHW50y4ZYJwANAOVbG0WDMnDbv8H1QF7fUpgAUjCg46doD+UsoWMd1lG8cINpchrLoqiCk3ISYj72/tNXRn0wFyTys1fj0XyPBcidEW8CD7Id7+Hsr90xOjMMdHCYBKsdChuwcrzbkx0otv6oDl/tIqG9U+6Me7CBxUGzqfyLKzsH8eP+Q2iV/0+PRuD8iD4TYL2vAXZVVkacG0h09vIqfo94EngslKFAESChAJkHpkhKqWQVXSM04eEjWxqHiolwoU3gzHz/N22V94uh9iidv2zYLJd4taUsc/bWqhORKzsMaxwgejkqUpt4/BnCUChwe538XUcGewZfWKR+GVdYxKcPuPHUqV7oW+k3FKbhNp3CNim9VU/cTE3MpG754Nkqs+6aTtC0NSwpCK00CFAilyJG1mjs0ZA8xGn7yZJ4Kf2cWbJ3e82kTLtPlonrbBBkf8EWaY7JlmJWEANDxBapVnznuNzUUlbTxMJTtul0EK8X1cHv+khmsNo66I3oQtrQjIcCouiD8NTdAWFPrBw9uZ+Jef+6Yew3WbKsF4wKG4R/lk7DXqB0g6zvcG0iaSnsLyqOEEczG5I1g3NFiAZmFVn+MfvucGAj1w7kytPxoAv8TU6VW5snK8Vxc8Jp66iCuAnAz3blZOYUuy9ZQR7lO2d52yayOGLkQymiwXW5FbK8rL4xS6NB+uoCtrDcm34z9SUf3hAJpbNO+bNzeBWhMWsRb7c0Q9rLot8eG5v72aZigky1fRCCmVENPx40WxV93PhIOWUHkE1sIVmdpAKQfpce77NLyv0twuwmZoSc2oqEBgK8LFWEcU/LR0sXqXOD6RyYY9p8gKHB/eA6xuSafakyWk1vMK17nHfKZzMijhbE4coJoOc4EpUs+T4QjueMhfjrTl7aFXjY/uq3f2XpBZFYWyOY7kXb1oTGZqF1wLEWdd4CF2N3RSWiyHk8G/N89yxlblI9Z9E48tE0w8t3B2koXg9kg2fyhZ/2kh/r8KcPHOBhakOQGjNJPX05vRD+6juVzf/ge7HirJDxghgxjt789lyGj7omFl68SpksF9mETq7jrVS/uk1E81iMpsjq/o+H6Ndm8CHiTBJRLaV/i+K6T6/62ggXH1G2NmCYsiSmb7PUEj619y6UzllJTDwRy+2SJHhzRplFZgjq88JWRVzZ4umhQPqXx5hDo16l+2hTQ1CY+mKEazEXqePUwkV5XMootcMFHFzc379JCao8IPEHfqjxi7a/yXNh4rhld6jGHHfsD3M8/ihpAePpat1kqeArh6Kmxiq4gkNOlMDdwj6PJmqDGX1YeXv0t6rHrSCnL9o0PXH4lElxSnwq7O44EHGCdcbMvgU9CdN9VteTkPZLW8u936nC+R+kUJfNvz28QNrShbOcsaLl31VAxB3BzoCuKOSXbrxmnSKwwdQTCLudpy3J2KIOHuXYwqZcoxNaQQvzmu21EIQrX3tDyeP1xwV1qxPk//7kK1H+YFqSKTJ/g0woqxUeEhQ/6wGmOoGmpkyIhYQ16p25l/JBtPyTBhANl6fCzVfHoI4xtuA1BOMz/8hS33mBdSKxofvkWv2dus+5nPHR9Pok+zDXjq1u+Cv1aSuLPRvu9gYtd9X2MVc+EGdy0FQLDqeznx6HAOnfeRfSdI6WnuRDKMGEpgyhBbxIYc4P6Z8tMk7K46CFKrvMmGGUt2q/8BAvwi+nfdxkXfOEnFiG6jRRf1XLkEcApQvkX/s5rnBekaTMQpKyHG+jwXxJ0rRVXVVvfShAcPlkTa4sIP8zpQge934+jNoA418AaL4cU4xzjee7oMAR6GWgnPTksWF8/UXILSCQmiR4MAQhthqGkxOi0r44iwCfAlPpeXK+vDpQ+4v2Q1U6l78ClIo5wJLlGKFAmyYbwHtL1l4K1WFpKb+Jf/zeYi9PEZa8VMjfzgmsP+k39ljyxQo+OX0kl0n0rBgY/cJlrGEVhPMIz9GRFTAYbJpjdmXToGVhlWbQ2YAypdCVlhnjTfq6CFiOKN+rNsxGTbPbVNfNGfWEzFgYbpSNa0aafrXL+obTf/uJRZwY8L6OaaSdjToLeApnnNK6BuSwuIZnTMyvIrHIT2IZaA8PrdINsKSYHXoPoJdKBZEjH0Att99ZKjl6LDznEZmUbqnO1HHAtq5vhyJFHV2wbYvHoYxLx5UbnAhQGsCWtnVxBOlm9vesp5pFFdYFGxACXzPo0KzpVcbmHedCprKXaB8ez7TT98Fslnb9dtT3pSlcyE6qsJUXqx712VbySTxch4S6p+WkhJW1ezGnr2WbplVIpsrHxPkZmE3+smFLMqGKDuo1ZwGRvG/skUtaFcFPSCz1XeJcl1ZEBfEI21DlWaSwaLU3/uvAohZAMU6j0v7MYmHtdayG9ClhhN5BwYrUm8z2OAiTeVSwXJspYPylglsDMyjb7a1fcvU74h/nJ/cUPD1u9Ra5ZvAKHGA+hL2DWNS7NiHpgtBu1FrT3D/AmhfxjjAlMvh8MoIT1sxBcAlfDUUfAayqChJXZZ8VRIjN+7/U9+5tWYBV2Z+OmS9yEQy9M/pFenrx1NSZFsGU2hUz34aKe0RL4KLD4qsAvEvJdLFm9ltguA3y1q0XCfj5GunsrLuZ95Pssar1P2BBoUvUTGHHnqRWSIB1+L3VYidLa9jhx30jdEr1XYqqGnaXX5fVIv5PBhv/9FZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA/dSMlpgYTOmzBQ8MsI4AUeKRtGzSPanlgG5gMjCfo4AEwXw9fGRCPwnuATfR6zug6ukfVx4Uu9dfJ+vXasM1ddqa9O74VNp+dfQ6eTFobSo4zXAvC7ZEdUEP1FucVraYxnjcm026sf4K31JhrBLhIN/oR3mKJ4PzZRSZAHEP7TGyK/8tVSU+fx4tDMAVj8uPmoy4KkRISWw9mqr1tffQgQsTU8nsVOWjSSvpLX/5Y+kvkuNlqf0anBvAJPl1Zi0PYEFmFneb74uFJ2nLBWt5pfsRByCw9RMsU/eOzd9Qe2wlt3Iaf3Zy1fi1GYnNC/sDkWiDy6xnD1OQDH50XlIfqFHGnUKU9nsFjYVDiFpJUBnKdsXl6q3/XmP+yQFRQ3T/LSXZfz2neZ2F53O09b7JwecIF1Vq7uyRdcaD0Vyr5ShdQS/MCRg95aBJIYSYRcEUjC2lNfbUZY0lHDthdiRAIRnnJlZ7XmBNZAtQs5Sft9dyzWMLIlQPLSl2v0AYKiP/NY6s2vLnjFpkaYdb8gRDXKrNmqSDfI5ediwygGxJK4EPkS7RZge/54Ln19+5lzn+JQ5GqT72MV5nOb6C1dPPNbb72LIZod8Dvq3jR+WvLdH0hrDm8F4ibOETAZt8IDPzgJEMZPnBMKF6Ph8+Ao3yHYm9tkFdRCCiEeP0UhNAVsorP3Ov7kG/8pnYPomefghEXTSn1MibwKNWqhaXZA+7/whPXZS0KdWmLP+SEPo1RinNxiH/8VPd2V2hmgVtgX1jnsP10XLzOGVQ9lazdSTnvo/CAThvjWrgbYl9mNTR/45B2PpbD3VDfjTUMEa7WMV7xjV04D8+VGhTszWuMHmJ+4YDf0bHVO8h+Dn5pLZjMrrF3TBgy7FcXZclh8dg7xnLCjSpUuBO4BCCNGUwi62V4MiciZjh2wGpqsuZyAkUwlk7bcpl4jhvIffSG+ynXon2eYqo3EywbUp68BRLS5wrYtWpSSg+F0OMzcgcHhX18UnNCtHHrWDZIWdgXz+TZCJ4XllMmf3dAN+tvmxnwkzHofwsjsDbT9nAp6Ucg4QAp9YX291iXC25H8JMXER9JjguqqbYSMXMyXpgMa8cFzlvPIl9gREDAeA0sYrEgQT6YttlHGxYHgOaoOILP834ddG8pp9JM51jw/q8vBKpVx4GDiDHOLx4aZuQ46CjcXr4LPq9WEXKZY4vKoRGj/dE1XftgHJw5oShLEQXkhKq7GPVTh1ljatwiuLxf2IsQub6iedjcrMy8180VQ3vNUhRWGwlnpIgcowznGf3T81a5uGAP2EORw2dmtgU77yzvaiBGPEZy7kc4LMFJh/+0LiE0JP52PA9sklgCxdWqViOg64wNdvjfPcHfYOINL2AQndctNwDHGjd9u3eL/fbteQTzFisdOh0PckH0gJ3K35ERs9CsEm1HXB3FSX9NfPI74UIhYHAYQ0t5GBhz2zk28UyFp9DsCpC3lO1Y2XdWb8Mu7jefEYyz7nHKC89MZNNhAli82fYuyYr/cQFhzR3pzRXaVyh2gwJtB+QicN4utiIvOQ6Hse80mYh+XR57FlgkaBrVRpKyqNnHy6UdnkBXKtB/bazbiC08NhlP+VK8/xZDjM+/GUvalAjltam0qy6azx5NEbqwQHdOhb9lfaSY8cMI5reO08lGqSZ+JBo4wSsEwyvxce3dzVUC7N2BXZWMes2XegGHzUT23G1ii+612GnqF+4Wy5SIaO+BN6OoMWBuNKEU4FczSqDubl6zwLFnDpsKYXGSMwU913Etx7PmTuaV8wLOGEvblGpY/blo0e6DY9X0dfngQAFQBhMWsVb0SU7+WIiQpnv0P5SWk9Higow8xIqt+f9eP8F+iKW3831ZlnOGow5F6dlg+g/XwBW6+w7R893I86GxSIAhiDITSxNDOBm6mOLhodprxri330lMdxlks1oDFZR4ej0QFRMaY2PrUUFXqjVXV37cJmsdrIeBWtozy4YNDNr57XcjictB5EgrCA1eoo9CjSK5b2xNd1fKRCWGY85bGCXPP1LEdcCjHMxtrhUfewUyVajTq3+sapuAfwsG3hNFdGhTkzcH+DjuSTodN5RAvE6ZwdDNp/cejUTD8bfJgqv/DzXKQjcjr4V24wxPv7VTSXXBpI2bedhwNMw3KmXgip4OWqaW/0mUQ9KtikZwgPRn9704TeWlbAGxhPR6g6IZHFPFDuIH6b9RTyXKD/HSAUa5Z2ZEQZR3UfthNYFyiAxdYlhECsGL/AU6WGx3raDe35oU5WGNhczlPkEbOuhikcdTs8Gpt06YK3Ciund1srAEBC+UBnEIjV7ZrWZFiqY3pgorVoFHMyqUIDSjHtDWS7yjij8n0yJNRmPFbNu3tHg/EcIeAlpbcC5K7tusaLaT7WUZK+Jpj//oVPFrCRx2NMvDzap43pNEl38TJ9OLfkrYMu+Fm3JyINiRzbpT9FeyJkmVGRNz+Sodn+Gw4/nWuf6AU4vvnmpFZKiGYCG/55a5CNDHIc0E5bm9MwaALpEDoN2EJGvyvH1xZDh6ikkUOoZZ4ZtjfxIZcvV3QKWDignUkWidJduZDsqMpXn9HgjZfcwoDm9MMIl86PYIQNybFQuqRN6WnIxB9qS+Z3GCcc3OBM/5oS3fQXB6cNWhyN8x5nE9j0MuWbf9BQUPbq55jskw4DoRg+Yfkv1RqoCIynUbyyhHNyVWis/CnYYuKVJxkpvtd4lCZyag+iYUtKa5nVMHo7m7XI61afP+mcpyVyx4LwQN2hx/KBX3v0mS4OBwD7oTWP2M9i2Tp1ylB75QH1xd0swydF/0bh9RaPR7c21q+/UpxiZp25CP0zQ8dR3UHLGJYqrgpfOTVmQWa3Omv2ebde1ctkmMcR4+PYyL9/1zYgVRWbuUaBWmRImo5hcB+EYy3xEdSf7SJGvatdkMTtn/UgV0eBazlc/Dlf9deZGYD+/YwSrpLeDPwzcH+1lr+PLI548W7nEDRHUjo6mOtyHle3P1ht9gKlztLDO6yDByXgLc1cq7JR54jJLx14UcaT5mGR4bc2bkEbj0Qptvr9/nni9XFW/DgVFtwkKbritGhsjLkIT/F9SYfcB6bkNqpljC5EH5YD1P01q90NEwOBeDOxbCeqLoH6jT0hjGifstl31ezl3cYiw0ufr7xurIc26cRzXYoVk+AW2fwh6BLuBI541NayrQDW9w1Qiv3kZqmfNE6fz4q+M5pplo5GUzPKJY5D6g9C0VFes6XotQRSrihdlCfki7Df1hJFYiesAevCFYXe5noOIf+vaB0gBREZfm8+ak0AXx2v+6lZgwAKhmZkwoHGuHJG0lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670511680712427297, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKbxK77IN4S8bEJMvHOa3rrc+Os9vciyOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk3L3OT4AZkCUhpRSlIwBbJRN6AOMAXSUR0C12KSmMwUQdX2UKGgGaAloD0MI+z+H+XI2bkCUhpRSlGgVTRQBaBZHQLXZWSqEOAl1fZQoaAZoCWgPQwgLem8MAahxQJSGlFKUaBVNPgFoFkdAtdouVHFxXHV9lChoBmgJaA9DCDNTWn+Lv3FAlIaUUpRoFUvUaBZHQLXaqVhTfix1fZQoaAZoCWgPQwhiuhCrPypmQJSGlFKUaBVN6ANoFkdAtd5fJeVs13V9lChoBmgJaA9DCFpKlpPQnnJAlIaUUpRoFU0iAWgWR0C132D1TR6XdX2UKGgGaAloD0MIk1URbrJ7Y0CUhpRSlGgVTegDaBZHQLXhqZ6Uqx11fZQoaAZoCWgPQwhNhuP5zIFyQJSGlFKUaBVNHwFoFkdAteI0fJV81HV9lChoBmgJaA9DCK5KIvsgq21AlIaUUpRoFU0bAWgWR0C14rf5ULlWdX2UKGgGaAloD0MIXp8561PMcUCUhpRSlGgVTc0CaBZHQLXkmU96kZd1fZQoaAZoCWgPQwjr4ctEEWxuQJSGlFKUaBVNDAFoFkdAteUcfvF3p3V9lChoBmgJaA9DCBueXinLHG1AlIaUUpRoFU03AWgWR0C15bbWiDdydX2UKGgGaAloD0MI+dhdoORAcECUhpRSlGgVTSUBaBZHQLXmjBIFvAJ1fZQoaAZoCWgPQwjdKLLWEHJxQJSGlFKUaBVNHQFoFkdAteceq5sj3XV9lChoBmgJaA9DCGWPUDNktXBAlIaUUpRoFU0XAWgWR0C156Q4XGfgdX2UKGgGaAloD0MIeESF6iaTckCUhpRSlGgVTRUBaBZHQLXobCRwIdF1fZQoaAZoCWgPQwhoCTICKstmQJSGlFKUaBVN6ANoFkdAterUPmPo3nV9lChoBmgJaA9DCDNOQ1RhRXJAlIaUUpRoFU0cAWgWR0C161ul0o0AdX2UKGgGaAloD0MI/5dr0QJ0E0CUhpRSlGgVS35oFkdAteuRrCWNWHV9lChoBmgJaA9DCMMOY9JfU29AlIaUUpRoFUv3aBZHQLXsA0OEug91fZQoaAZoCWgPQwi9jc2O1NNwQJSGlFKUaBVNEQFoFkdAteyD/Ot4iXV9lChoBmgJaA9DCHyd1Jfl9XFAlIaUUpRoFU29AmgWR0C17jk5EMLGdX2UKGgGaAloD0MI9+rjoe9lYECUhpRSlGgVTegDaBZHQLXxAonrpq11fZQoaAZoCWgPQwjONjemJ7NlQJSGlFKUaBVN6ANoFkdAtfO2dXko4XV9lChoBmgJaA9DCP2fw3w5sHFAlIaUUpRoFU0NAWgWR0C19Dskt29tdX2UKGgGaAloD0MIEheARuk8cUCUhpRSlGgVS/ZoFkdAtfTzs8gZCXV9lChoBmgJaA9DCKMBvAXS7HFAlIaUUpRoFUvtaBZHQLX1WNWEK3N1fZQoaAZoCWgPQwinrnyW57huQJSGlFKUaBVL72gWR0C19cSxZ+x4dX2UKGgGaAloD0MIJ6JfW7+9cUCUhpRSlGgVS/poFkdAtfY7VPN3XHV9lChoBmgJaA9DCCdp/pgWWnBAlIaUUpRoFU3gAWgWR0C194rbYbsGdX2UKGgGaAloD0MI3IMQkK/YcUCUhpRSlGgVTRwBaBZHQLX4FP1ct5F1fZQoaAZoCWgPQwiifazgt4ZwQJSGlFKUaBVNGgFoFkdAtfikTufEoHV9lChoBmgJaA9DCGH+CpmrhXBAlIaUUpRoFU0AAWgWR0C1+WakEcKgdX2UKGgGaAloD0MIG0zD8BGMckCUhpRSlGgVTSsBaBZHQLX58y5Zr591fZQoaAZoCWgPQwg7qwX2mIxDQJSGlFKUaBVLkmgWR0C1+jGpda+wdX2UKGgGaAloD0MI8Uv9vGl2cUCUhpRSlGgVTYADaBZHQLX8f9zOopB1fZQoaAZoCWgPQwg0+PvFbDBwQJSGlFKUaBVNQAFoFkdAtf0gzdk8R3V9lChoBmgJaA9DCKvN/6sOmmZAlIaUUpRoFU3oA2gWR0C1/9EiQkondX2UKGgGaAloD0MI3bOu0bLecUCUhpRSlGgVS/FoFkdAtgA9R4yGjHV9lChoBmgJaA9DCGXG20ovOnFAlIaUUpRoFUv8aBZHQLYA+ALiMpB1fZQoaAZoCWgPQwjcZirEYzdyQJSGlFKUaBVNBAFoFkdAtgFx3np0OnV9lChoBmgJaA9DCNPbn4tGVnFAlIaUUpRoFU0GAWgWR0C2AehCD28JdX2UKGgGaAloD0MI53Ct9vBNcECUhpRSlGgVTQABaBZHQLYCZS1Vo6F1fZQoaAZoCWgPQwg17zhFxzhxQJSGlFKUaBVNIQFoFkdAtgM+DK5kLHV9lChoBmgJaA9DCIqUZvM4eXJAlIaUUpRoFUv7aBZHQLYDs4GUwBZ1fZQoaAZoCWgPQwjP2m0XWqtxQJSGlFKUaBVNZgFoFkdAtgRnaJyhjHV9lChoBmgJaA9DCJI9Qs1QZ3BAlIaUUpRoFUv+aBZHQLYE2Fdszl91fZQoaAZoCWgPQwjt0obD0gZlQJSGlFKUaBVN6ANoFkdAtgclNGmUGHV9lChoBmgJaA9DCDBkdasnIHJAlIaUUpRoFU0lAWgWR0C2B/WZAprldX2UKGgGaAloD0MIc77Ye/FDZECUhpRSlGgVTegDaBZHQLYKcnoPkJd1fZQoaAZoCWgPQwhHj9/btGdyQJSGlFKUaBVL/WgWR0C2Cuerp7kXdX2UKGgGaAloD0MIweRGkbWmcECUhpRSlGgVS/poFkdAtgtfvPTodXV9lChoBmgJaA9DCLSwpx1+LnNAlIaUUpRoFU02AWgWR0C2DD5aq0dBdX2UKGgGaAloD0MIuVSlLW4EcECUhpRSlGgVS/5oFkdAtgzUXEZR9HV9lChoBmgJaA9DCLXEymhkKHNAlIaUUpRoFU0WAWgWR0C2DYUPxx1gdX2UKGgGaAloD0MI8pnsnydOcECUhpRSlGgVTSoBaBZHQLYOQntfG+91fZQoaAZoCWgPQwgqOSf2UF1vQJSGlFKUaBVL7mgWR0C2D0qSHM2WdX2UKGgGaAloD0MIIQclzPQIcECUhpRSlGgVTRcBaBZHQLYP9QsPJ7t1fZQoaAZoCWgPQwhC0NGqFkZwQJSGlFKUaBVNBwFoFkdAthCpFG5MDnV9lChoBmgJaA9DCAeVuI7xjHBAlIaUUpRoFU0JAWgWR0C2EWGQSzw+dX2UKGgGaAloD0MIJ71vfO2VcECUhpRSlGgVTRkBaBZHQLYSix+8Xep1fZQoaAZoCWgPQwgO9FDbhndAQJSGlFKUaBVLjWgWR0C2EuIGD+R6dX2UKGgGaAloD0MITDWzlgLPb0CUhpRSlGgVTSoBaBZHQLYTk3j+7191fZQoaAZoCWgPQwg/cJUnEDJIQJSGlFKUaBVLwmgWR0C2E+lXq7iAdX2UKGgGaAloD0MIgSIWMWwnbUCUhpRSlGgVS/1oFkdAthSdAbADaHV9lChoBmgJaA9DCKQ4Rx1dznBAlIaUUpRoFUvpaBZHQLYVB24/eLx1fZQoaAZoCWgPQwica5ih8UdwQJSGlFKUaBVNCQFoFkdAthWKnWJ79nV9lChoBmgJaA9DCPj/ccLEIHJAlIaUUpRoFU0BAWgWR0C2FgziCJ40dX2UKGgGaAloD0MIt+171F92ckCUhpRSlGgVTR8BaBZHQLYW4Qu27Wd1fZQoaAZoCWgPQwj1L0lliltyQJSGlFKUaBVNKwFoFkdAthdvb349HXV9lChoBmgJaA9DCPvqqkAttW9AlIaUUpRoFU0MAWgWR0C2F/UCFK02dX2UKGgGaAloD0MIe0rOiX0ocUCUhpRSlGgVTRIBaBZHQLYYddIoVmB1fZQoaAZoCWgPQwgAjdKlfyZzQJSGlFKUaBVNFwFoFkdAthk/K8tf5XV9lChoBmgJaA9DCCbjGMkesF9AlIaUUpRoFU3oA2gWR0C2G/cpCrtFdX2UKGgGaAloD0MIxSCwcuizcECUhpRSlGgVTQwBaBZHQLYcd7iADq51fZQoaAZoCWgPQwg9npYfuMxmQJSGlFKUaBVN6ANoFkdAth7tvUBnz3V9lChoBmgJaA9DCKweMA8ZknFAlIaUUpRoFU0tAWgWR0C2H36eoUBXdX2UKGgGaAloD0MIqIsUysKHcECUhpRSlGgVS/loFkdAth/0Z9/jKnV9lChoBmgJaA9DCBR6/Ul86G9AlIaUUpRoFUvpaBZHQLYgp0fYBeZ1fZQoaAZoCWgPQwjWHYtt0m9yQJSGlFKUaBVNKQFoFkdAtiE44m1IAnV9lChoBmgJaA9DCF4vTRFgk29AlIaUUpRoFU0KAWgWR0C2IbklVtGedX2UKGgGaAloD0MIBvcDHhggOECUhpRSlGgVS7VoFkdAtiILGYKIBXV9lChoBmgJaA9DCKpGrwbognBAlIaUUpRoFU0jAWgWR0C2IyYGlhw3dX2UKGgGaAloD0MIc0pATEL6bkCUhpRSlGgVS/loFkdAtiO+MfigkHV9lChoBmgJaA9DCBtGQfB4HWhAlIaUUpRoFU1jAWgWR0C2JM7BbfP5dX2UKGgGaAloD0MICyqqfqWmZkCUhpRSlGgVTegDaBZHQLYpdeYD1Xh1fZQoaAZoCWgPQwhl3qrrEJdwQJSGlFKUaBVL6mgWR0C2KkABYFJQdX2UKGgGaAloD0MIkdJsHgcSc0CUhpRSlGgVS9ZoFkdAtitoZ88cMnV9lChoBmgJaA9DCLXf2omSpXJAlIaUUpRoFUvraBZHQLYsErO7g891fZQoaAZoCWgPQwgf1hu1wgJxQJSGlFKUaBVNGwFoFkdAtizhTHbRGHV9lChoBmgJaA9DCBKlvcHXznBAlIaUUpRoFU0aAWgWR0C2LadCmdiEdX2UKGgGaAloD0MIHec24V62UECUhpRSlGgVTegDaBZHQLYxH23KB/Z1fZQoaAZoCWgPQwhlyLH1DEkoQJSGlFKUaBVLkWgWR0C2MaS/wiJPdX2UKGgGaAloD0MI/BcIAuRGbkCUhpRSlGgVTRYBaBZHQLYyK4qgAZN1fZQoaAZoCWgPQwg1ejVAaRByQJSGlFKUaBVNSwFoFkdAtjLLVQQ+U3V9lChoBmgJaA9DCP6arFEP2HFAlIaUUpRoFU0aAWgWR0C2M1Jb2USqdX2UKGgGaAloD0MI/wdYq3ZHcUCUhpRSlGgVTSwBaBZHQLY0I5IH1OF1fZQoaAZoCWgPQwhORwA3C9FkQJSGlFKUaBVN6ANoFkdAtjaY00m+kHV9lChoBmgJaA9DCCRCI9i4GnJAlIaUUpRoFU0TAWgWR0C2NydvwVj7dX2UKGgGaAloD0MIBHY1ecrvcUCUhpRSlGgVTQMBaBZHQLY3oVOsT391ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11724, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-v_1_1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45902cf869afeb208224ec8559cc09bb4885de512687df78961c80e8eb3d6992
3
+ size 153802
ppo-LunarLander-v2-v_1_1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-v_1_1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa1f8f5b430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa1f8f5b4c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa1f8f5b550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa1f8f5b5e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa1f8f5b670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa1f8f5b700>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa1f8f5b790>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa1f8f5b820>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa1f8f5b8b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa1f8f5b940>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa1f8f5b9d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa1f8f55810>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAlKYuqwDktdLUOHAce7HrDNtZuWfKumqC4lZa8bdxRabjiHX7ERhJrerd1OFAIrf8/iGIeJ0zOsnnGhp9V1K1yy9BZtWaHDLLmbHY/sdIAX2rPWouZqIp5okLATy5txg8GJqLnMqMKVD1WWbYMsBbNmFa8Qx0LTJ5exwy6Q7I4AIYL+zEYWHqDbUBdXRMYQIcYkWyNNctOrAyqe8cjZOcvFQnXb4xAq/TNI5J+/xvFC3qPuvZ4GlO7QadpHVrXrohcbm+uAjq+DcCiSCQ25t8hA+ltASRMa2cgY97wB32tfXadOCrKyFuHHbsdjQ4SsPecoY452geklnz9bkUpPifTov3J/70ZJpLOXkf+WSTLWzSnriOmQXmK6M41TMzzKi28bmUlLMLtZPJWU3XH+64+WmSAriQPd8uM5mPscd8cC+l3XSJ2QFGWBJAmFcYH2GtcP7tMgJ3ZcS7xtO6dOnjewbJa6LF9y7ospna4t8/0Yf1HvLhy/+PZhx9ysAEd/zFmof2TThKOk2rs4SVvwJM3PSf5wM+dbyUcP/lmvNDCGAKqQlLu1m7ri9q6yi2yTdyrsykfBwUNcgfMj4kQu7hFamxZ+3X7qclNFN85+2fs1AV1wQj5FvMqX0MBWIavHW50y4ZYJwANAOVbG0WDMnDbv8H1QF7fUpgAUjCg46doD+UsoWMd1lG8cINpchrLoqiCk3ISYj72/tNXRn0wFyTys1fj0XyPBcidEW8CD7Id7+Hsr90xOjMMdHCYBKsdChuwcrzbkx0otv6oDl/tIqG9U+6Me7CBxUGzqfyLKzsH8eP+Q2iV/0+PRuD8iD4TYL2vAXZVVkacG0h09vIqfo94EngslKFAESChAJkHpkhKqWQVXSM04eEjWxqHiolwoU3gzHz/N22V94uh9iidv2zYLJd4taUsc/bWqhORKzsMaxwgejkqUpt4/BnCUChwe538XUcGewZfWKR+GVdYxKcPuPHUqV7oW+k3FKbhNp3CNim9VU/cTE3MpG754Nkqs+6aTtC0NSwpCK00CFAilyJG1mjs0ZA8xGn7yZJ4Kf2cWbJ3e82kTLtPlonrbBBkf8EWaY7JlmJWEANDxBapVnznuNzUUlbTxMJTtul0EK8X1cHv+khmsNo66I3oQtrQjIcCouiD8NTdAWFPrBw9uZ+Jef+6Yew3WbKsF4wKG4R/lk7DXqB0g6zvcG0iaSnsLyqOEEczG5I1g3NFiAZmFVn+MfvucGAj1w7kytPxoAv8TU6VW5snK8Vxc8Jp66iCuAnAz3blZOYUuy9ZQR7lO2d52yayOGLkQymiwXW5FbK8rL4xS6NB+uoCtrDcm34z9SUf3hAJpbNO+bNzeBWhMWsRb7c0Q9rLot8eG5v72aZigky1fRCCmVENPx40WxV93PhIOWUHkE1sIVmdpAKQfpce77NLyv0twuwmZoSc2oqEBgK8LFWEcU/LR0sXqXOD6RyYY9p8gKHB/eA6xuSafakyWk1vMK17nHfKZzMijhbE4coJoOc4EpUs+T4QjueMhfjrTl7aFXjY/uq3f2XpBZFYWyOY7kXb1oTGZqF1wLEWdd4CF2N3RSWiyHk8G/N89yxlblI9Z9E48tE0w8t3B2koXg9kg2fyhZ/2kh/r8KcPHOBhakOQGjNJPX05vRD+6juVzf/ge7HirJDxghgxjt789lyGj7omFl68SpksF9mETq7jrVS/uk1E81iMpsjq/o+H6Ndm8CHiTBJRLaV/i+K6T6/62ggXH1G2NmCYsiSmb7PUEj619y6UzllJTDwRy+2SJHhzRplFZgjq88JWRVzZ4umhQPqXx5hDo16l+2hTQ1CY+mKEazEXqePUwkV5XMootcMFHFzc379JCao8IPEHfqjxi7a/yXNh4rhld6jGHHfsD3M8/ihpAePpat1kqeArh6Kmxiq4gkNOlMDdwj6PJmqDGX1YeXv0t6rHrSCnL9o0PXH4lElxSnwq7O44EHGCdcbMvgU9CdN9VteTkPZLW8u936nC+R+kUJfNvz28QNrShbOcsaLl31VAxB3BzoCuKOSXbrxmnSKwwdQTCLudpy3J2KIOHuXYwqZcoxNaQQvzmu21EIQrX3tDyeP1xwV1qxPk//7kK1H+YFqSKTJ/g0woqxUeEhQ/6wGmOoGmpkyIhYQ16p25l/JBtPyTBhANl6fCzVfHoI4xtuA1BOMz/8hS33mBdSKxofvkWv2dus+5nPHR9Pok+zDXjq1u+Cv1aSuLPRvu9gYtd9X2MVc+EGdy0FQLDqeznx6HAOnfeRfSdI6WnuRDKMGEpgyhBbxIYc4P6Z8tMk7K46CFKrvMmGGUt2q/8BAvwi+nfdxkXfOEnFiG6jRRf1XLkEcApQvkX/s5rnBekaTMQpKyHG+jwXxJ0rRVXVVvfShAcPlkTa4sIP8zpQge934+jNoA418AaL4cU4xzjee7oMAR6GWgnPTksWF8/UXILSCQmiR4MAQhthqGkxOi0r44iwCfAlPpeXK+vDpQ+4v2Q1U6l78ClIo5wJLlGKFAmyYbwHtL1l4K1WFpKb+Jf/zeYi9PEZa8VMjfzgmsP+k39ljyxQo+OX0kl0n0rBgY/cJlrGEVhPMIz9GRFTAYbJpjdmXToGVhlWbQ2YAypdCVlhnjTfq6CFiOKN+rNsxGTbPbVNfNGfWEzFgYbpSNa0aafrXL+obTf/uJRZwY8L6OaaSdjToLeApnnNK6BuSwuIZnTMyvIrHIT2IZaA8PrdINsKSYHXoPoJdKBZEjH0Att99ZKjl6LDznEZmUbqnO1HHAtq5vhyJFHV2wbYvHoYxLx5UbnAhQGsCWtnVxBOlm9vesp5pFFdYFGxACXzPo0KzpVcbmHedCprKXaB8ez7TT98Fslnb9dtT3pSlcyE6qsJUXqx712VbySTxch4S6p+WkhJW1ezGnr2WbplVIpsrHxPkZmE3+smFLMqGKDuo1ZwGRvG/skUtaFcFPSCz1XeJcl1ZEBfEI21DlWaSwaLU3/uvAohZAMU6j0v7MYmHtdayG9ClhhN5BwYrUm8z2OAiTeVSwXJspYPylglsDMyjb7a1fcvU74h/nJ/cUPD1u9Ra5ZvAKHGA+hL2DWNS7NiHpgtBu1FrT3D/AmhfxjjAlMvh8MoIT1sxBcAlfDUUfAayqChJXZZ8VRIjN+7/U9+5tWYBV2Z+OmS9yEQy9M/pFenrx1NSZFsGU2hUz34aKe0RL4KLD4qsAvEvJdLFm9ltguA3y1q0XCfj5GunsrLuZ95Pssar1P2BBoUvUTGHHnqRWSIB1+L3VYidLa9jhx30jdEr1XYqqGnaXX5fVIv5PBhv/9FZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": "RandomState(MT19937)"
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA/dSMlpgYTOmzBQ8MsI4AUeKRtGzSPanlgG5gMjCfo4AEwXw9fGRCPwnuATfR6zug6ukfVx4Uu9dfJ+vXasM1ddqa9O74VNp+dfQ6eTFobSo4zXAvC7ZEdUEP1FucVraYxnjcm026sf4K31JhrBLhIN/oR3mKJ4PzZRSZAHEP7TGyK/8tVSU+fx4tDMAVj8uPmoy4KkRISWw9mqr1tffQgQsTU8nsVOWjSSvpLX/5Y+kvkuNlqf0anBvAJPl1Zi0PYEFmFneb74uFJ2nLBWt5pfsRByCw9RMsU/eOzd9Qe2wlt3Iaf3Zy1fi1GYnNC/sDkWiDy6xnD1OQDH50XlIfqFHGnUKU9nsFjYVDiFpJUBnKdsXl6q3/XmP+yQFRQ3T/LSXZfz2neZ2F53O09b7JwecIF1Vq7uyRdcaD0Vyr5ShdQS/MCRg95aBJIYSYRcEUjC2lNfbUZY0lHDthdiRAIRnnJlZ7XmBNZAtQs5Sft9dyzWMLIlQPLSl2v0AYKiP/NY6s2vLnjFpkaYdb8gRDXKrNmqSDfI5ediwygGxJK4EPkS7RZge/54Ln19+5lzn+JQ5GqT72MV5nOb6C1dPPNbb72LIZod8Dvq3jR+WvLdH0hrDm8F4ibOETAZt8IDPzgJEMZPnBMKF6Ph8+Ao3yHYm9tkFdRCCiEeP0UhNAVsorP3Ov7kG/8pnYPomefghEXTSn1MibwKNWqhaXZA+7/whPXZS0KdWmLP+SEPo1RinNxiH/8VPd2V2hmgVtgX1jnsP10XLzOGVQ9lazdSTnvo/CAThvjWrgbYl9mNTR/45B2PpbD3VDfjTUMEa7WMV7xjV04D8+VGhTszWuMHmJ+4YDf0bHVO8h+Dn5pLZjMrrF3TBgy7FcXZclh8dg7xnLCjSpUuBO4BCCNGUwi62V4MiciZjh2wGpqsuZyAkUwlk7bcpl4jhvIffSG+ynXon2eYqo3EywbUp68BRLS5wrYtWpSSg+F0OMzcgcHhX18UnNCtHHrWDZIWdgXz+TZCJ4XllMmf3dAN+tvmxnwkzHofwsjsDbT9nAp6Ucg4QAp9YX291iXC25H8JMXER9JjguqqbYSMXMyXpgMa8cFzlvPIl9gREDAeA0sYrEgQT6YttlHGxYHgOaoOILP834ddG8pp9JM51jw/q8vBKpVx4GDiDHOLx4aZuQ46CjcXr4LPq9WEXKZY4vKoRGj/dE1XftgHJw5oShLEQXkhKq7GPVTh1ljatwiuLxf2IsQub6iedjcrMy8180VQ3vNUhRWGwlnpIgcowznGf3T81a5uGAP2EORw2dmtgU77yzvaiBGPEZy7kc4LMFJh/+0LiE0JP52PA9sklgCxdWqViOg64wNdvjfPcHfYOINL2AQndctNwDHGjd9u3eL/fbteQTzFisdOh0PckH0gJ3K35ERs9CsEm1HXB3FSX9NfPI74UIhYHAYQ0t5GBhz2zk28UyFp9DsCpC3lO1Y2XdWb8Mu7jefEYyz7nHKC89MZNNhAli82fYuyYr/cQFhzR3pzRXaVyh2gwJtB+QicN4utiIvOQ6Hse80mYh+XR57FlgkaBrVRpKyqNnHy6UdnkBXKtB/bazbiC08NhlP+VK8/xZDjM+/GUvalAjltam0qy6azx5NEbqwQHdOhb9lfaSY8cMI5reO08lGqSZ+JBo4wSsEwyvxce3dzVUC7N2BXZWMes2XegGHzUT23G1ii+612GnqF+4Wy5SIaO+BN6OoMWBuNKEU4FczSqDubl6zwLFnDpsKYXGSMwU913Etx7PmTuaV8wLOGEvblGpY/blo0e6DY9X0dfngQAFQBhMWsVb0SU7+WIiQpnv0P5SWk9Higow8xIqt+f9eP8F+iKW3831ZlnOGow5F6dlg+g/XwBW6+w7R893I86GxSIAhiDITSxNDOBm6mOLhodprxri330lMdxlks1oDFZR4ej0QFRMaY2PrUUFXqjVXV37cJmsdrIeBWtozy4YNDNr57XcjictB5EgrCA1eoo9CjSK5b2xNd1fKRCWGY85bGCXPP1LEdcCjHMxtrhUfewUyVajTq3+sapuAfwsG3hNFdGhTkzcH+DjuSTodN5RAvE6ZwdDNp/cejUTD8bfJgqv/DzXKQjcjr4V24wxPv7VTSXXBpI2bedhwNMw3KmXgip4OWqaW/0mUQ9KtikZwgPRn9704TeWlbAGxhPR6g6IZHFPFDuIH6b9RTyXKD/HSAUa5Z2ZEQZR3UfthNYFyiAxdYlhECsGL/AU6WGx3raDe35oU5WGNhczlPkEbOuhikcdTs8Gpt06YK3Ciund1srAEBC+UBnEIjV7ZrWZFiqY3pgorVoFHMyqUIDSjHtDWS7yjij8n0yJNRmPFbNu3tHg/EcIeAlpbcC5K7tusaLaT7WUZK+Jpj//oVPFrCRx2NMvDzap43pNEl38TJ9OLfkrYMu+Fm3JyINiRzbpT9FeyJkmVGRNz+Sodn+Gw4/nWuf6AU4vvnmpFZKiGYCG/55a5CNDHIc0E5bm9MwaALpEDoN2EJGvyvH1xZDh6ikkUOoZZ4ZtjfxIZcvV3QKWDignUkWidJduZDsqMpXn9HgjZfcwoDm9MMIl86PYIQNybFQuqRN6WnIxB9qS+Z3GCcc3OBM/5oS3fQXB6cNWhyN8x5nE9j0MuWbf9BQUPbq55jskw4DoRg+Yfkv1RqoCIynUbyyhHNyVWis/CnYYuKVJxkpvtd4lCZyag+iYUtKa5nVMHo7m7XI61afP+mcpyVyx4LwQN2hx/KBX3v0mS4OBwD7oTWP2M9i2Tp1ylB75QH1xd0swydF/0bh9RaPR7c21q+/UpxiZp25CP0zQ8dR3UHLGJYqrgpfOTVmQWa3Omv2ebde1ctkmMcR4+PYyL9/1zYgVRWbuUaBWmRImo5hcB+EYy3xEdSf7SJGvatdkMTtn/UgV0eBazlc/Dlf9deZGYD+/YwSrpLeDPwzcH+1lr+PLI548W7nEDRHUjo6mOtyHle3P1ht9gKlztLDO6yDByXgLc1cq7JR54jJLx14UcaT5mGR4bc2bkEbj0Qptvr9/nni9XFW/DgVFtwkKbritGhsjLkIT/F9SYfcB6bkNqpljC5EH5YD1P01q90NEwOBeDOxbCeqLoH6jT0hjGifstl31ezl3cYiw0ufr7xurIc26cRzXYoVk+AW2fwh6BLuBI541NayrQDW9w1Qiv3kZqmfNE6fz4q+M5pplo5GUzPKJY5D6g9C0VFes6XotQRSrihdlCfki7Df1hJFYiesAevCFYXe5noOIf+vaB0gBREZfm8+ak0AXx2v+6lZgwAKhmZkwoHGuHJG0lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 2000896,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670511680712427297,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKbxK77IN4S8bEJMvHOa3rrc+Os9vciyOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk3L3OT4AZkCUhpRSlIwBbJRN6AOMAXSUR0C12KSmMwUQdX2UKGgGaAloD0MI+z+H+XI2bkCUhpRSlGgVTRQBaBZHQLXZWSqEOAl1fZQoaAZoCWgPQwgLem8MAahxQJSGlFKUaBVNPgFoFkdAtdouVHFxXHV9lChoBmgJaA9DCDNTWn+Lv3FAlIaUUpRoFUvUaBZHQLXaqVhTfix1fZQoaAZoCWgPQwhiuhCrPypmQJSGlFKUaBVN6ANoFkdAtd5fJeVs13V9lChoBmgJaA9DCFpKlpPQnnJAlIaUUpRoFU0iAWgWR0C132D1TR6XdX2UKGgGaAloD0MIk1URbrJ7Y0CUhpRSlGgVTegDaBZHQLXhqZ6Uqx11fZQoaAZoCWgPQwhNhuP5zIFyQJSGlFKUaBVNHwFoFkdAteI0fJV81HV9lChoBmgJaA9DCK5KIvsgq21AlIaUUpRoFU0bAWgWR0C14rf5ULlWdX2UKGgGaAloD0MIXp8561PMcUCUhpRSlGgVTc0CaBZHQLXkmU96kZd1fZQoaAZoCWgPQwjr4ctEEWxuQJSGlFKUaBVNDAFoFkdAteUcfvF3p3V9lChoBmgJaA9DCBueXinLHG1AlIaUUpRoFU03AWgWR0C15bbWiDdydX2UKGgGaAloD0MI+dhdoORAcECUhpRSlGgVTSUBaBZHQLXmjBIFvAJ1fZQoaAZoCWgPQwjdKLLWEHJxQJSGlFKUaBVNHQFoFkdAteceq5sj3XV9lChoBmgJaA9DCGWPUDNktXBAlIaUUpRoFU0XAWgWR0C156Q4XGfgdX2UKGgGaAloD0MIeESF6iaTckCUhpRSlGgVTRUBaBZHQLXobCRwIdF1fZQoaAZoCWgPQwhoCTICKstmQJSGlFKUaBVN6ANoFkdAterUPmPo3nV9lChoBmgJaA9DCDNOQ1RhRXJAlIaUUpRoFU0cAWgWR0C161ul0o0AdX2UKGgGaAloD0MI/5dr0QJ0E0CUhpRSlGgVS35oFkdAteuRrCWNWHV9lChoBmgJaA9DCMMOY9JfU29AlIaUUpRoFUv3aBZHQLXsA0OEug91fZQoaAZoCWgPQwi9jc2O1NNwQJSGlFKUaBVNEQFoFkdAteyD/Ot4iXV9lChoBmgJaA9DCHyd1Jfl9XFAlIaUUpRoFU29AmgWR0C17jk5EMLGdX2UKGgGaAloD0MI9+rjoe9lYECUhpRSlGgVTegDaBZHQLXxAonrpq11fZQoaAZoCWgPQwjONjemJ7NlQJSGlFKUaBVN6ANoFkdAtfO2dXko4XV9lChoBmgJaA9DCP2fw3w5sHFAlIaUUpRoFU0NAWgWR0C19Dskt29tdX2UKGgGaAloD0MIEheARuk8cUCUhpRSlGgVS/ZoFkdAtfTzs8gZCXV9lChoBmgJaA9DCKMBvAXS7HFAlIaUUpRoFUvtaBZHQLX1WNWEK3N1fZQoaAZoCWgPQwinrnyW57huQJSGlFKUaBVL72gWR0C19cSxZ+x4dX2UKGgGaAloD0MIJ6JfW7+9cUCUhpRSlGgVS/poFkdAtfY7VPN3XHV9lChoBmgJaA9DCCdp/pgWWnBAlIaUUpRoFU3gAWgWR0C194rbYbsGdX2UKGgGaAloD0MI3IMQkK/YcUCUhpRSlGgVTRwBaBZHQLX4FP1ct5F1fZQoaAZoCWgPQwiifazgt4ZwQJSGlFKUaBVNGgFoFkdAtfikTufEoHV9lChoBmgJaA9DCGH+CpmrhXBAlIaUUpRoFU0AAWgWR0C1+WakEcKgdX2UKGgGaAloD0MIG0zD8BGMckCUhpRSlGgVTSsBaBZHQLX58y5Zr591fZQoaAZoCWgPQwg7qwX2mIxDQJSGlFKUaBVLkmgWR0C1+jGpda+wdX2UKGgGaAloD0MI8Uv9vGl2cUCUhpRSlGgVTYADaBZHQLX8f9zOopB1fZQoaAZoCWgPQwg0+PvFbDBwQJSGlFKUaBVNQAFoFkdAtf0gzdk8R3V9lChoBmgJaA9DCKvN/6sOmmZAlIaUUpRoFU3oA2gWR0C1/9EiQkondX2UKGgGaAloD0MI3bOu0bLecUCUhpRSlGgVS/FoFkdAtgA9R4yGjHV9lChoBmgJaA9DCGXG20ovOnFAlIaUUpRoFUv8aBZHQLYA+ALiMpB1fZQoaAZoCWgPQwjcZirEYzdyQJSGlFKUaBVNBAFoFkdAtgFx3np0OnV9lChoBmgJaA9DCNPbn4tGVnFAlIaUUpRoFU0GAWgWR0C2AehCD28JdX2UKGgGaAloD0MI53Ct9vBNcECUhpRSlGgVTQABaBZHQLYCZS1Vo6F1fZQoaAZoCWgPQwg17zhFxzhxQJSGlFKUaBVNIQFoFkdAtgM+DK5kLHV9lChoBmgJaA9DCIqUZvM4eXJAlIaUUpRoFUv7aBZHQLYDs4GUwBZ1fZQoaAZoCWgPQwjP2m0XWqtxQJSGlFKUaBVNZgFoFkdAtgRnaJyhjHV9lChoBmgJaA9DCJI9Qs1QZ3BAlIaUUpRoFUv+aBZHQLYE2Fdszl91fZQoaAZoCWgPQwjt0obD0gZlQJSGlFKUaBVN6ANoFkdAtgclNGmUGHV9lChoBmgJaA9DCDBkdasnIHJAlIaUUpRoFU0lAWgWR0C2B/WZAprldX2UKGgGaAloD0MIc77Ye/FDZECUhpRSlGgVTegDaBZHQLYKcnoPkJd1fZQoaAZoCWgPQwhHj9/btGdyQJSGlFKUaBVL/WgWR0C2Cuerp7kXdX2UKGgGaAloD0MIweRGkbWmcECUhpRSlGgVS/poFkdAtgtfvPTodXV9lChoBmgJaA9DCLSwpx1+LnNAlIaUUpRoFU02AWgWR0C2DD5aq0dBdX2UKGgGaAloD0MIuVSlLW4EcECUhpRSlGgVS/5oFkdAtgzUXEZR9HV9lChoBmgJaA9DCLXEymhkKHNAlIaUUpRoFU0WAWgWR0C2DYUPxx1gdX2UKGgGaAloD0MI8pnsnydOcECUhpRSlGgVTSoBaBZHQLYOQntfG+91fZQoaAZoCWgPQwgqOSf2UF1vQJSGlFKUaBVL7mgWR0C2D0qSHM2WdX2UKGgGaAloD0MIIQclzPQIcECUhpRSlGgVTRcBaBZHQLYP9QsPJ7t1fZQoaAZoCWgPQwhC0NGqFkZwQJSGlFKUaBVNBwFoFkdAthCpFG5MDnV9lChoBmgJaA9DCAeVuI7xjHBAlIaUUpRoFU0JAWgWR0C2EWGQSzw+dX2UKGgGaAloD0MIJ71vfO2VcECUhpRSlGgVTRkBaBZHQLYSix+8Xep1fZQoaAZoCWgPQwgO9FDbhndAQJSGlFKUaBVLjWgWR0C2EuIGD+R6dX2UKGgGaAloD0MITDWzlgLPb0CUhpRSlGgVTSoBaBZHQLYTk3j+7191fZQoaAZoCWgPQwg/cJUnEDJIQJSGlFKUaBVLwmgWR0C2E+lXq7iAdX2UKGgGaAloD0MIgSIWMWwnbUCUhpRSlGgVS/1oFkdAthSdAbADaHV9lChoBmgJaA9DCKQ4Rx1dznBAlIaUUpRoFUvpaBZHQLYVB24/eLx1fZQoaAZoCWgPQwica5ih8UdwQJSGlFKUaBVNCQFoFkdAthWKnWJ79nV9lChoBmgJaA9DCPj/ccLEIHJAlIaUUpRoFU0BAWgWR0C2FgziCJ40dX2UKGgGaAloD0MIt+171F92ckCUhpRSlGgVTR8BaBZHQLYW4Qu27Wd1fZQoaAZoCWgPQwj1L0lliltyQJSGlFKUaBVNKwFoFkdAthdvb349HXV9lChoBmgJaA9DCPvqqkAttW9AlIaUUpRoFU0MAWgWR0C2F/UCFK02dX2UKGgGaAloD0MIe0rOiX0ocUCUhpRSlGgVTRIBaBZHQLYYddIoVmB1fZQoaAZoCWgPQwgAjdKlfyZzQJSGlFKUaBVNFwFoFkdAthk/K8tf5XV9lChoBmgJaA9DCCbjGMkesF9AlIaUUpRoFU3oA2gWR0C2G/cpCrtFdX2UKGgGaAloD0MIxSCwcuizcECUhpRSlGgVTQwBaBZHQLYcd7iADq51fZQoaAZoCWgPQwg9npYfuMxmQJSGlFKUaBVN6ANoFkdAth7tvUBnz3V9lChoBmgJaA9DCKweMA8ZknFAlIaUUpRoFU0tAWgWR0C2H36eoUBXdX2UKGgGaAloD0MIqIsUysKHcECUhpRSlGgVS/loFkdAth/0Z9/jKnV9lChoBmgJaA9DCBR6/Ul86G9AlIaUUpRoFUvpaBZHQLYgp0fYBeZ1fZQoaAZoCWgPQwjWHYtt0m9yQJSGlFKUaBVNKQFoFkdAtiE44m1IAnV9lChoBmgJaA9DCF4vTRFgk29AlIaUUpRoFU0KAWgWR0C2IbklVtGedX2UKGgGaAloD0MIBvcDHhggOECUhpRSlGgVS7VoFkdAtiILGYKIBXV9lChoBmgJaA9DCKpGrwbognBAlIaUUpRoFU0jAWgWR0C2IyYGlhw3dX2UKGgGaAloD0MIc0pATEL6bkCUhpRSlGgVS/loFkdAtiO+MfigkHV9lChoBmgJaA9DCBtGQfB4HWhAlIaUUpRoFU1jAWgWR0C2JM7BbfP5dX2UKGgGaAloD0MICyqqfqWmZkCUhpRSlGgVTegDaBZHQLYpdeYD1Xh1fZQoaAZoCWgPQwhl3qrrEJdwQJSGlFKUaBVL6mgWR0C2KkABYFJQdX2UKGgGaAloD0MIkdJsHgcSc0CUhpRSlGgVS9ZoFkdAtitoZ88cMnV9lChoBmgJaA9DCLXf2omSpXJAlIaUUpRoFUvraBZHQLYsErO7g891fZQoaAZoCWgPQwgf1hu1wgJxQJSGlFKUaBVNGwFoFkdAtizhTHbRGHV9lChoBmgJaA9DCBKlvcHXznBAlIaUUpRoFU0aAWgWR0C2LadCmdiEdX2UKGgGaAloD0MIHec24V62UECUhpRSlGgVTegDaBZHQLYxH23KB/Z1fZQoaAZoCWgPQwhlyLH1DEkoQJSGlFKUaBVLkWgWR0C2MaS/wiJPdX2UKGgGaAloD0MI/BcIAuRGbkCUhpRSlGgVTRYBaBZHQLYyK4qgAZN1fZQoaAZoCWgPQwg1ejVAaRByQJSGlFKUaBVNSwFoFkdAtjLLVQQ+U3V9lChoBmgJaA9DCP6arFEP2HFAlIaUUpRoFU0aAWgWR0C2M1Jb2USqdX2UKGgGaAloD0MI/wdYq3ZHcUCUhpRSlGgVTSwBaBZHQLY0I5IH1OF1fZQoaAZoCWgPQwhORwA3C9FkQJSGlFKUaBVN6ANoFkdAtjaY00m+kHV9lChoBmgJaA9DCCRCI9i4GnJAlIaUUpRoFU0TAWgWR0C2NydvwVj7dX2UKGgGaAloD0MIBHY1ecrvcUCUhpRSlGgVTQMBaBZHQLY3oVOsT391ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 11724,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 6,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-v_1_1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e426a0c362b6b2dba0b5e9f69bea726461a6f4fe69849dec2a151016e8813fa4
3
+ size 87929
ppo-LunarLander-v2-v_1_1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0fff7534340ee6a07c99c4d7877f66c99e4bb333fd4d431dbf4c48295f70c81
3
+ size 43201
ppo-LunarLander-v2-v_1_1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-v_1_1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 270.81361867099224, "std_reward": 17.741390741682373, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T13:41:37.230554"}
 
1
+ {"mean_reward": 257.5790572589277, "std_reward": 40.853520753292024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T16:50:45.363625"}