Update handler.py
Browse files- handler.py +34 -19
handler.py
CHANGED
@@ -1,47 +1,62 @@
|
|
1 |
import torch
|
2 |
from transformers import CLIPProcessor, CLIPModel
|
3 |
from PIL import Image
|
|
|
4 |
import base64
|
5 |
import io
|
6 |
|
7 |
class EndpointHandler:
|
8 |
def __init__(self, model_dir=None): # AWS expects model_dir
|
9 |
-
print("Loading model...")
|
10 |
self.model = CLIPModel.from_pretrained("dazpye/clip-image")
|
11 |
self.processor = CLIPProcessor.from_pretrained("dazpye/clip-image")
|
12 |
|
13 |
-
def _load_image(self,
|
14 |
-
"""Fetches an image
|
15 |
try:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
-
print(f"
|
|
|
27 |
return None # Return None if image loading fails
|
28 |
|
29 |
def __call__(self, data):
|
30 |
"""Main inference function Hugging Face expects."""
|
31 |
-
print("Processing input...")
|
32 |
-
|
|
|
|
|
|
|
33 |
text = data.get("text", ["default caption"]) # Default text
|
34 |
images = data.get("images", []) # List of images
|
35 |
-
|
36 |
# Convert image URLs or base64 strings to PIL images
|
37 |
pil_images = [self._load_image(img) for img in images if img]
|
|
|
38 |
|
39 |
if not pil_images:
|
40 |
-
return {"error": "No valid images provided."}
|
41 |
-
|
42 |
inputs = self.processor(text=text, images=pil_images, return_tensors="pt")
|
43 |
|
44 |
-
print("Running inference...")
|
45 |
with torch.no_grad():
|
46 |
outputs = self.model(**inputs)
|
47 |
|
|
|
1 |
import torch
|
2 |
from transformers import CLIPProcessor, CLIPModel
|
3 |
from PIL import Image
|
4 |
+
import requests
|
5 |
import base64
|
6 |
import io
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, model_dir=None): # AWS expects model_dir
|
10 |
+
print("π Loading model...")
|
11 |
self.model = CLIPModel.from_pretrained("dazpye/clip-image")
|
12 |
self.processor = CLIPProcessor.from_pretrained("dazpye/clip-image")
|
13 |
|
14 |
+
def _load_image(self, image_data):
|
15 |
+
"""Fetches an image from a URL or decodes a base64 image."""
|
16 |
try:
|
17 |
+
if isinstance(image_data, str):
|
18 |
+
if image_data.startswith("http"):
|
19 |
+
# Fetch image from URL
|
20 |
+
print(f"π Fetching image from: {image_data}")
|
21 |
+
response = requests.get(image_data, timeout=5)
|
22 |
+
print(f"β
HTTP Status Code: {response.status_code}")
|
23 |
+
|
24 |
+
if response.status_code == 200:
|
25 |
+
image_bytes = io.BytesIO(response.content)
|
26 |
+
return Image.open(image_bytes).convert("RGB")
|
27 |
+
else:
|
28 |
+
print(f"β Failed to fetch image: HTTP {response.status_code}")
|
29 |
+
|
30 |
+
else:
|
31 |
+
# Handle base64-encoded image
|
32 |
+
print("πΈ Decoding base64 image...")
|
33 |
+
return Image.open(io.BytesIO(base64.b64decode(image_data))).convert("RGB")
|
34 |
+
|
35 |
except Exception as e:
|
36 |
+
print(f"β οΈ Exception in image loading: {e}")
|
37 |
+
|
38 |
return None # Return None if image loading fails
|
39 |
|
40 |
def __call__(self, data):
|
41 |
"""Main inference function Hugging Face expects."""
|
42 |
+
print("π₯ Processing input...")
|
43 |
+
|
44 |
+
if "inputs" in data:
|
45 |
+
data = data["inputs"]
|
46 |
+
|
47 |
text = data.get("text", ["default caption"]) # Default text
|
48 |
images = data.get("images", []) # List of images
|
49 |
+
|
50 |
# Convert image URLs or base64 strings to PIL images
|
51 |
pil_images = [self._load_image(img) for img in images if img]
|
52 |
+
pil_images = [img for img in pil_images if img] # Remove None values
|
53 |
|
54 |
if not pil_images:
|
55 |
+
return {"error": "β No valid images provided. Check URLs or base64 encoding."}
|
56 |
+
|
57 |
inputs = self.processor(text=text, images=pil_images, return_tensors="pt")
|
58 |
|
59 |
+
print("π₯οΈ Running inference...")
|
60 |
with torch.no_grad():
|
61 |
outputs = self.model(**inputs)
|
62 |
|