davidrd123 commited on
Commit
bff4b05
·
verified ·
1 Parent(s): 46b763b

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +257 -0
README.md ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "black-forest-labs/FLUX.1-dev"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - standard
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'In the style of a b3nbr4nd painting, A steaming bowl of ramen with chopsticks resting on the edge, against a background of concentric orange and blue circles. The noodles are detailed in a geometric pattern and the steam creates a rhythmic design.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ - text: 'In the style of a b3nbr4nd painting, A vintage record player with vinyl spinning, set on a yellow table. The background features an alternating chevron pattern in purple and green. The turntable''s mechanical parts are rendered in precise geometric shapes.'
27
+ parameters:
28
+ negative_prompt: 'blurry, cropped, ugly'
29
+ output:
30
+ url: ./assets/image_2_0.png
31
+ - text: 'In the style of a b3nbr4nd painting, A sleeping cat curled up in a modernist chair, with a background of interlocking hexagons in red and blue. The cat''s fur is stylized into rhythmic curves, matching the geometric environment.'
32
+ parameters:
33
+ negative_prompt: 'blurry, cropped, ugly'
34
+ output:
35
+ url: ./assets/image_3_0.png
36
+ - text: 'In the style of a b3nbr4nd painting, A classic motorcycle viewed from the side, against a backdrop of radiating diamond patterns in teal and gold. The chrome parts reflect abstract shapes, and the wheels create circular motifs in the composition.'
37
+ parameters:
38
+ negative_prompt: 'blurry, cropped, ugly'
39
+ output:
40
+ url: ./assets/image_4_0.png
41
+ - text: 'In the style of a b3nbr4nd painting, Portrait of a woman with silver hair wearing dotted blue glasses and a white lace collar, against a swirling background of green and yellow patterns. The background features geometric circles and zigzag designs.'
42
+ parameters:
43
+ negative_prompt: 'blurry, cropped, ugly'
44
+ output:
45
+ url: ./assets/image_5_0.png
46
+ - text: 'In the style of a b3nbr4nd painting, A storefront sign for ''Golden Palace Noodles'' in both English and Chinese characters, mounted on a tall pole against a geometric cityscape with blue and tan buildings. A small arrow points to available parking.'
47
+ parameters:
48
+ negative_prompt: 'blurry, cropped, ugly'
49
+ output:
50
+ url: ./assets/image_6_0.png
51
+ - text: 'In the style of a b3nbr4nd painting, Dark purple figs sliced in half on a terra cotta plate, revealing their seeded interiors. The background features a repeating pattern of blue and yellow squares, with wavy lines creating a dynamic lower section.'
52
+ parameters:
53
+ negative_prompt: 'blurry, cropped, ugly'
54
+ output:
55
+ url: ./assets/image_7_0.png
56
+ - text: 'In the style of a b3nbr4nd painting, Two young people wearing matching navy shirts and light gray face masks, posed against a warm yellow background. Their curly hair and gentle head tilts create a symmetrical composition.'
57
+ parameters:
58
+ negative_prompt: 'blurry, cropped, ugly'
59
+ output:
60
+ url: ./assets/image_8_0.png
61
+ - text: 'In the style of a b3nbr4nd painting, A hamster wearing tiny glasses and a bowtie sitting at a miniature desk with a tiny laptop, against a background of spiral patterns in teal and orange. Office supplies scaled to hamster-size are arranged neatly on the desk.'
62
+ parameters:
63
+ negative_prompt: 'blurry, cropped, ugly'
64
+ output:
65
+ url: ./assets/image_9_0.png
66
+ - text: 'In the style of a b3nbr4nd painting, A bearded man in a plaid shirt and denim apron carefully sanding a mid-century modern chair, surrounded by woodworking tools. The background features overlapping triangles in rust and navy blue colors, with sawdust creating delicate patterns in the air.'
67
+ parameters:
68
+ negative_prompt: 'blurry, cropped, ugly'
69
+ output:
70
+ url: ./assets/image_10_0.png
71
+ ---
72
+
73
+ # Ben-Brand-LoRA
74
+
75
+ This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
76
+
77
+
78
+ No validation prompt was used during training.
79
+
80
+ None
81
+
82
+
83
+
84
+ ## Validation settings
85
+ - CFG: `3.0`
86
+ - CFG Rescale: `0.0`
87
+ - Steps: `20`
88
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
89
+ - Seed: `42`
90
+ - Resolution: `1024x1024`
91
+ - Skip-layer guidance:
92
+
93
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
94
+
95
+ You can find some example images in the following gallery:
96
+
97
+
98
+ <Gallery />
99
+
100
+ The text encoder **was not** trained.
101
+ You may reuse the base model text encoder for inference.
102
+
103
+
104
+ ## Training settings
105
+
106
+ - Training epochs: 0
107
+ - Training steps: 500
108
+ - Learning rate: 0.0001
109
+ - Learning rate schedule: polynomial
110
+ - Warmup steps: 100
111
+ - Max grad norm: 0.1
112
+ - Effective batch size: 6
113
+ - Micro-batch size: 2
114
+ - Gradient accumulation steps: 3
115
+ - Number of GPUs: 1
116
+ - Gradient checkpointing: True
117
+ - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])
118
+ - Optimizer: adamw_bf16
119
+ - Trainable parameter precision: Pure BF16
120
+ - Caption dropout probability: 10.0%
121
+
122
+
123
+ - LoRA Rank: 64
124
+ - LoRA Alpha: None
125
+ - LoRA Dropout: 0.1
126
+ - LoRA initialisation style: default
127
+
128
+
129
+ ## Datasets
130
+
131
+ ### ben-brand-256
132
+ - Repeats: 10
133
+ - Total number of images: 98
134
+ - Total number of aspect buckets: 1
135
+ - Resolution: 0.065536 megapixels
136
+ - Cropped: False
137
+ - Crop style: None
138
+ - Crop aspect: None
139
+ - Used for regularisation data: No
140
+ ### ben-brand-crop-256
141
+ - Repeats: 10
142
+ - Total number of images: 98
143
+ - Total number of aspect buckets: 1
144
+ - Resolution: 0.065536 megapixels
145
+ - Cropped: True
146
+ - Crop style: center
147
+ - Crop aspect: square
148
+ - Used for regularisation data: No
149
+ ### ben-brand-512
150
+ - Repeats: 10
151
+ - Total number of images: 98
152
+ - Total number of aspect buckets: 1
153
+ - Resolution: 0.262144 megapixels
154
+ - Cropped: False
155
+ - Crop style: None
156
+ - Crop aspect: None
157
+ - Used for regularisation data: No
158
+ ### ben-brand-crop-512
159
+ - Repeats: 10
160
+ - Total number of images: 98
161
+ - Total number of aspect buckets: 1
162
+ - Resolution: 0.262144 megapixels
163
+ - Cropped: True
164
+ - Crop style: center
165
+ - Crop aspect: square
166
+ - Used for regularisation data: No
167
+ ### ben-brand-768
168
+ - Repeats: 10
169
+ - Total number of images: 98
170
+ - Total number of aspect buckets: 1
171
+ - Resolution: 0.589824 megapixels
172
+ - Cropped: False
173
+ - Crop style: None
174
+ - Crop aspect: None
175
+ - Used for regularisation data: No
176
+ ### ben-brand-crop-768
177
+ - Repeats: 10
178
+ - Total number of images: 98
179
+ - Total number of aspect buckets: 1
180
+ - Resolution: 0.589824 megapixels
181
+ - Cropped: True
182
+ - Crop style: center
183
+ - Crop aspect: square
184
+ - Used for regularisation data: No
185
+ ### ben-brand-1024
186
+ - Repeats: 10
187
+ - Total number of images: 98
188
+ - Total number of aspect buckets: 1
189
+ - Resolution: 1.048576 megapixels
190
+ - Cropped: False
191
+ - Crop style: None
192
+ - Crop aspect: None
193
+ - Used for regularisation data: No
194
+ ### ben-brand-crop-1024
195
+ - Repeats: 10
196
+ - Total number of images: 98
197
+ - Total number of aspect buckets: 1
198
+ - Resolution: 1.048576 megapixels
199
+ - Cropped: True
200
+ - Crop style: center
201
+ - Crop aspect: square
202
+ - Used for regularisation data: No
203
+ ### ben-brand-1440
204
+ - Repeats: 10
205
+ - Total number of images: 98
206
+ - Total number of aspect buckets: 2
207
+ - Resolution: 2.0736 megapixels
208
+ - Cropped: False
209
+ - Crop style: None
210
+ - Crop aspect: None
211
+ - Used for regularisation data: No
212
+ ### ben-brand-crop-1440
213
+ - Repeats: 10
214
+ - Total number of images: 98
215
+ - Total number of aspect buckets: 1
216
+ - Resolution: 2.0736 megapixels
217
+ - Cropped: True
218
+ - Crop style: center
219
+ - Crop aspect: square
220
+ - Used for regularisation data: No
221
+
222
+
223
+ ## Inference
224
+
225
+
226
+ ```python
227
+ import torch
228
+ from diffusers import DiffusionPipeline
229
+
230
+ model_id = 'black-forest-labs/FLUX.1-dev'
231
+ adapter_id = 'davidrd123/Ben-Brand-LoRA'
232
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
233
+ pipeline.load_lora_weights(adapter_id)
234
+
235
+ prompt = "An astronaut is riding a horse through the jungles of Thailand."
236
+
237
+
238
+ ## Optional: quantise the model to save on vram.
239
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
240
+ from optimum.quanto import quantize, freeze, qint8
241
+ quantize(pipeline.transformer, weights=qint8)
242
+ freeze(pipeline.transformer)
243
+
244
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
245
+ image = pipeline(
246
+ prompt=prompt,
247
+ num_inference_steps=20,
248
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
249
+ width=1024,
250
+ height=1024,
251
+ guidance_scale=3.0,
252
+ ).images[0]
253
+ image.save("output.png", format="PNG")
254
+ ```
255
+
256
+
257
+