davidanugraha commited on
Commit
236a47a
·
verified ·
1 Parent(s): 4e98ca1

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2560,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 9728,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.52.4",
27
+ "use_cache": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.52.4"
13
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step179
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e2425215597484c88d1ed9575e711402c9cc3bf813103ba11743cfd1d4da3db
3
+ size 4967215360
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7469bcaedf2118d7fc31f6a8cb4617af75100f26ce4e3906f6589d4b83d4de06
3
+ size 3077766632
model.safetensors.index.json ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8044936192
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
291
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
293
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
295
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
340
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
344
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
346
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
347
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
348
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
349
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
350
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
352
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
353
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
354
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
355
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
356
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
358
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
359
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
360
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
361
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
362
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
364
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
365
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
367
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.norm.weight": "model-00002-of-00002.safetensors"
404
+ }
405
+ }
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:835f869ea325fd6edf27b48b589309fb66641cb92b45f2fc13d1bb6e8814106c
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:707c86685b9e1f735b18dc919713ae2cd51daab0a09a029c367289ebc04c3592
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,1294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 180,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0055768560474032764,
14
+ "grad_norm": 46.09545673843412,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.7007,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.011153712094806553,
21
+ "grad_norm": 44.46037462061874,
22
+ "learning_rate": 2.7777777777777776e-07,
23
+ "loss": 1.6776,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.01673056814220983,
28
+ "grad_norm": 40.73202594632966,
29
+ "learning_rate": 5.555555555555555e-07,
30
+ "loss": 1.5002,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.022307424189613106,
35
+ "grad_norm": 42.88149317876023,
36
+ "learning_rate": 8.333333333333333e-07,
37
+ "loss": 1.6238,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.027884280237016383,
42
+ "grad_norm": 42.513311455243326,
43
+ "learning_rate": 1.111111111111111e-06,
44
+ "loss": 1.678,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.03346113628441966,
49
+ "grad_norm": 43.24081118630191,
50
+ "learning_rate": 1.3888888888888892e-06,
51
+ "loss": 1.7263,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.03903799233182294,
56
+ "grad_norm": 25.77384950516741,
57
+ "learning_rate": 1.6666666666666667e-06,
58
+ "loss": 1.272,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.04461484837922621,
63
+ "grad_norm": 24.137113597713526,
64
+ "learning_rate": 1.944444444444445e-06,
65
+ "loss": 1.1886,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.050191704426629485,
70
+ "grad_norm": 11.629783818575346,
71
+ "learning_rate": 2.222222222222222e-06,
72
+ "loss": 1.2781,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.055768560474032766,
77
+ "grad_norm": 8.00658343314912,
78
+ "learning_rate": 2.5e-06,
79
+ "loss": 1.0554,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.06134541652143604,
84
+ "grad_norm": 7.16421136479377,
85
+ "learning_rate": 2.7777777777777783e-06,
86
+ "loss": 1.172,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.06692227256883931,
91
+ "grad_norm": 4.137822360489128,
92
+ "learning_rate": 3.055555555555556e-06,
93
+ "loss": 1.0006,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.0724991286162426,
98
+ "grad_norm": 2.9965048555106204,
99
+ "learning_rate": 3.3333333333333333e-06,
100
+ "loss": 0.8589,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.07807598466364588,
105
+ "grad_norm": 3.1452698509974435,
106
+ "learning_rate": 3.6111111111111115e-06,
107
+ "loss": 1.0973,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.08365284071104914,
112
+ "grad_norm": 2.8688258039939702,
113
+ "learning_rate": 3.88888888888889e-06,
114
+ "loss": 1.2093,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.08922969675845242,
119
+ "grad_norm": 2.0484453697226055,
120
+ "learning_rate": 4.166666666666667e-06,
121
+ "loss": 0.9244,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.0948065528058557,
126
+ "grad_norm": 2.4395289504901303,
127
+ "learning_rate": 4.444444444444444e-06,
128
+ "loss": 0.9074,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.10038340885325897,
133
+ "grad_norm": 3.3112350184991084,
134
+ "learning_rate": 4.722222222222222e-06,
135
+ "loss": 0.9056,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.10596026490066225,
140
+ "grad_norm": 2.2238505337460017,
141
+ "learning_rate": 5e-06,
142
+ "loss": 0.9156,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.11153712094806553,
147
+ "grad_norm": 1.6023122355959452,
148
+ "learning_rate": 4.999529926121254e-06,
149
+ "loss": 0.7145,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.1171139769954688,
154
+ "grad_norm": 1.5747014721624342,
155
+ "learning_rate": 4.998119881260576e-06,
156
+ "loss": 0.9797,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.12269083304287208,
161
+ "grad_norm": 1.3008124678483608,
162
+ "learning_rate": 4.995770395678171e-06,
163
+ "loss": 0.8005,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.12826768909027536,
168
+ "grad_norm": 1.3341513132245302,
169
+ "learning_rate": 4.99248235291948e-06,
170
+ "loss": 0.9707,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.13384454513767863,
175
+ "grad_norm": 1.2836163377989422,
176
+ "learning_rate": 4.9882569894829146e-06,
177
+ "loss": 0.8303,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.13942140118508192,
182
+ "grad_norm": 1.5625132921969171,
183
+ "learning_rate": 4.983095894354858e-06,
184
+ "loss": 1.012,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.1449982572324852,
189
+ "grad_norm": 1.3279470446330688,
190
+ "learning_rate": 4.977001008412113e-06,
191
+ "loss": 0.8311,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.15057511327988846,
196
+ "grad_norm": 1.1984169005450507,
197
+ "learning_rate": 4.969974623692023e-06,
198
+ "loss": 0.701,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.15615196932729175,
203
+ "grad_norm": 1.2333632916915551,
204
+ "learning_rate": 4.962019382530521e-06,
205
+ "loss": 0.8799,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.16172882537469502,
210
+ "grad_norm": 1.1133972779802328,
211
+ "learning_rate": 4.953138276568462e-06,
212
+ "loss": 0.75,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.16730568142209828,
217
+ "grad_norm": 1.0517214425691086,
218
+ "learning_rate": 4.943334645626589e-06,
219
+ "loss": 0.7046,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.17288253746950158,
224
+ "grad_norm": 0.9434629605801058,
225
+ "learning_rate": 4.93261217644956e-06,
226
+ "loss": 0.6824,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.17845939351690485,
231
+ "grad_norm": 1.1847049987820477,
232
+ "learning_rate": 4.9209749013195155e-06,
233
+ "loss": 0.8257,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.1840362495643081,
238
+ "grad_norm": 1.0458338052848428,
239
+ "learning_rate": 4.908427196539701e-06,
240
+ "loss": 0.8103,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.1896131056117114,
245
+ "grad_norm": 1.0107452620708213,
246
+ "learning_rate": 4.894973780788722e-06,
247
+ "loss": 0.8077,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.19518996165911467,
252
+ "grad_norm": 1.0732542601644082,
253
+ "learning_rate": 4.8806197133460385e-06,
254
+ "loss": 0.83,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.20076681770651794,
259
+ "grad_norm": 1.111873065908315,
260
+ "learning_rate": 4.865370392189377e-06,
261
+ "loss": 0.8261,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.20634367375392124,
266
+ "grad_norm": 0.9469124459097857,
267
+ "learning_rate": 4.849231551964771e-06,
268
+ "loss": 0.7354,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.2119205298013245,
273
+ "grad_norm": 0.9890209354758053,
274
+ "learning_rate": 4.832209261830002e-06,
275
+ "loss": 0.7614,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.21749738584872777,
280
+ "grad_norm": 0.9617476508331165,
281
+ "learning_rate": 4.814309923172227e-06,
282
+ "loss": 0.6634,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.22307424189613106,
287
+ "grad_norm": 0.8693853556809209,
288
+ "learning_rate": 4.7955402672006855e-06,
289
+ "loss": 0.6524,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.22865109794353433,
294
+ "grad_norm": 1.1164427987030467,
295
+ "learning_rate": 4.775907352415367e-06,
296
+ "loss": 0.9437,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.2342279539909376,
301
+ "grad_norm": 1.0342203325734225,
302
+ "learning_rate": 4.755418561952595e-06,
303
+ "loss": 0.7833,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.2398048100383409,
308
+ "grad_norm": 1.0381130170634878,
309
+ "learning_rate": 4.734081600808531e-06,
310
+ "loss": 0.8537,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.24538166608574416,
315
+ "grad_norm": 0.980064465437933,
316
+ "learning_rate": 4.711904492941644e-06,
317
+ "loss": 0.7711,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.25095852213314745,
322
+ "grad_norm": 2.4464904323304255,
323
+ "learning_rate": 4.688895578255228e-06,
324
+ "loss": 0.8071,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.2565353781805507,
329
+ "grad_norm": 0.9568068666237374,
330
+ "learning_rate": 4.665063509461098e-06,
331
+ "loss": 0.7486,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.262112234227954,
336
+ "grad_norm": 0.9773834471749688,
337
+ "learning_rate": 4.640417248825667e-06,
338
+ "loss": 0.6626,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.26768909027535726,
343
+ "grad_norm": 0.9467873226243072,
344
+ "learning_rate": 4.614966064799603e-06,
345
+ "loss": 0.7737,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.2732659463227605,
350
+ "grad_norm": 0.929090416098371,
351
+ "learning_rate": 4.588719528532342e-06,
352
+ "loss": 0.7288,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.27884280237016384,
357
+ "grad_norm": 0.9558116358409616,
358
+ "learning_rate": 4.561687510272767e-06,
359
+ "loss": 0.7173,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.2844196584175671,
364
+ "grad_norm": 1.0358016086386252,
365
+ "learning_rate": 4.533880175657419e-06,
366
+ "loss": 0.8558,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.2899965144649704,
371
+ "grad_norm": 0.9268356298097264,
372
+ "learning_rate": 4.50530798188761e-06,
373
+ "loss": 0.6913,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.29557337051237365,
378
+ "grad_norm": 0.9026491423974176,
379
+ "learning_rate": 4.475981673796899e-06,
380
+ "loss": 0.6573,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.3011502265597769,
385
+ "grad_norm": 0.9341984552378991,
386
+ "learning_rate": 4.445912279810401e-06,
387
+ "loss": 0.7178,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.3067270826071802,
392
+ "grad_norm": 0.963698636099554,
393
+ "learning_rate": 4.415111107797445e-06,
394
+ "loss": 0.672,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.3123039386545835,
399
+ "grad_norm": 1.0123866280188825,
400
+ "learning_rate": 4.3835897408191515e-06,
401
+ "loss": 0.7958,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.31788079470198677,
406
+ "grad_norm": 1.0536090394015367,
407
+ "learning_rate": 4.351360032772512e-06,
408
+ "loss": 0.8384,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.32345765074939004,
413
+ "grad_norm": 1.005997664037765,
414
+ "learning_rate": 4.318434103932622e-06,
415
+ "loss": 0.8511,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.3290345067967933,
420
+ "grad_norm": 0.9082165011415732,
421
+ "learning_rate": 4.284824336394748e-06,
422
+ "loss": 0.6731,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.33461136284419657,
427
+ "grad_norm": 0.9309889749980601,
428
+ "learning_rate": 4.250543369417921e-06,
429
+ "loss": 0.7276,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.34018821889159984,
434
+ "grad_norm": 1.7819442287605565,
435
+ "learning_rate": 4.215604094671835e-06,
436
+ "loss": 0.7831,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.34576507493900316,
441
+ "grad_norm": 0.9434498292744896,
442
+ "learning_rate": 4.180019651388807e-06,
443
+ "loss": 0.7503,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.3513419309864064,
448
+ "grad_norm": 1.0424541071897502,
449
+ "learning_rate": 4.14380342142266e-06,
450
+ "loss": 0.9153,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.3569187870338097,
455
+ "grad_norm": 0.9753148306326342,
456
+ "learning_rate": 4.106969024216348e-06,
457
+ "loss": 0.6555,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.36249564308121296,
462
+ "grad_norm": 0.964467277240988,
463
+ "learning_rate": 4.069530311680247e-06,
464
+ "loss": 0.7372,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.3680724991286162,
469
+ "grad_norm": 1.1418604292487458,
470
+ "learning_rate": 4.031501362983007e-06,
471
+ "loss": 0.7585,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.3736493551760195,
476
+ "grad_norm": 0.9125259121774503,
477
+ "learning_rate": 3.992896479256966e-06,
478
+ "loss": 0.6934,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.3792262112234228,
483
+ "grad_norm": 0.9183210408388318,
484
+ "learning_rate": 3.953730178220067e-06,
485
+ "loss": 0.6741,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.3848030672708261,
490
+ "grad_norm": 0.9841348365534922,
491
+ "learning_rate": 3.914017188716347e-06,
492
+ "loss": 0.7713,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.39037992331822935,
497
+ "grad_norm": 0.9397953829688301,
498
+ "learning_rate": 3.8737724451770155e-06,
499
+ "loss": 0.6898,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.3959567793656326,
504
+ "grad_norm": 0.9360968357631917,
505
+ "learning_rate": 3.833011082004229e-06,
506
+ "loss": 0.7356,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.4015336354130359,
511
+ "grad_norm": 1.0490874310335498,
512
+ "learning_rate": 3.7917484278796578e-06,
513
+ "loss": 0.8834,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.40711049146043915,
518
+ "grad_norm": 0.8729992951101984,
519
+ "learning_rate": 3.7500000000000005e-06,
520
+ "loss": 0.6581,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.4126873475078425,
525
+ "grad_norm": 0.8526096559762923,
526
+ "learning_rate": 3.7077814982415966e-06,
527
+ "loss": 0.6796,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.41826420355524574,
532
+ "grad_norm": 0.9123193201559427,
533
+ "learning_rate": 3.665108799256348e-06,
534
+ "loss": 0.6747,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.423841059602649,
539
+ "grad_norm": 0.8692473859121223,
540
+ "learning_rate": 3.621997950501156e-06,
541
+ "loss": 0.6573,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.4294179156500523,
546
+ "grad_norm": 0.9141140630813748,
547
+ "learning_rate": 3.578465164203134e-06,
548
+ "loss": 0.6013,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.43499477169745554,
553
+ "grad_norm": 1.0607296974506348,
554
+ "learning_rate": 3.5345268112628485e-06,
555
+ "loss": 0.897,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.44057162774485886,
560
+ "grad_norm": 1.027907705537933,
561
+ "learning_rate": 3.4901994150978926e-06,
562
+ "loss": 0.8139,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.44614848379226213,
567
+ "grad_norm": 0.8964908897959806,
568
+ "learning_rate": 3.4454996454291066e-06,
569
+ "loss": 0.682,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.4517253398396654,
574
+ "grad_norm": 0.9696808820116304,
575
+ "learning_rate": 3.400444312011776e-06,
576
+ "loss": 0.7677,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.45730219588706866,
581
+ "grad_norm": 0.9538347785493502,
582
+ "learning_rate": 3.3550503583141726e-06,
583
+ "loss": 0.7707,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.46287905193447193,
588
+ "grad_norm": 0.8834434922285562,
589
+ "learning_rate": 3.3093348551458033e-06,
590
+ "loss": 0.7254,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.4684559079818752,
595
+ "grad_norm": 0.9664583802329054,
596
+ "learning_rate": 3.2633149942377835e-06,
597
+ "loss": 0.6009,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.4740327640292785,
602
+ "grad_norm": 0.9989900249921821,
603
+ "learning_rate": 3.217008081777726e-06,
604
+ "loss": 0.7277,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.4796096200766818,
609
+ "grad_norm": 0.9641224372984417,
610
+ "learning_rate": 3.1704315319015936e-06,
611
+ "loss": 0.7693,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.48518647612408505,
616
+ "grad_norm": 0.8563738741272415,
617
+ "learning_rate": 3.1236028601449534e-06,
618
+ "loss": 0.5502,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.4907633321714883,
623
+ "grad_norm": 0.9814456923681252,
624
+ "learning_rate": 3.0765396768561005e-06,
625
+ "loss": 0.7591,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.4963401882188916,
630
+ "grad_norm": 1.0031797145449588,
631
+ "learning_rate": 3.0292596805735275e-06,
632
+ "loss": 0.7336,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.5019170442662949,
637
+ "grad_norm": 1.0307972932412588,
638
+ "learning_rate": 2.9817806513702247e-06,
639
+ "loss": 0.8728,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.5074939003136981,
644
+ "grad_norm": 0.9121639360068265,
645
+ "learning_rate": 2.9341204441673267e-06,
646
+ "loss": 0.7234,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.5130707563611014,
651
+ "grad_norm": 0.9266082791067043,
652
+ "learning_rate": 2.8862969820196017e-06,
653
+ "loss": 0.6637,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.5186476124085047,
658
+ "grad_norm": 0.9817424775807924,
659
+ "learning_rate": 2.8383282493753282e-06,
660
+ "loss": 0.818,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.524224468455908,
665
+ "grad_norm": 0.9290655450825701,
666
+ "learning_rate": 2.7902322853130758e-06,
667
+ "loss": 0.7372,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.5298013245033113,
672
+ "grad_norm": 0.9630341129207757,
673
+ "learning_rate": 2.742027176757948e-06,
674
+ "loss": 0.786,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.5353781805507145,
679
+ "grad_norm": 0.8736837998218376,
680
+ "learning_rate": 2.6937310516798276e-06,
681
+ "loss": 0.6546,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.5409550365981178,
686
+ "grad_norm": 0.970695862336814,
687
+ "learning_rate": 2.6453620722761897e-06,
688
+ "loss": 0.6716,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.546531892645521,
693
+ "grad_norm": 0.9311590205600201,
694
+ "learning_rate": 2.5969384281420425e-06,
695
+ "loss": 0.6955,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.5521087486929244,
700
+ "grad_norm": 0.9022156745489164,
701
+ "learning_rate": 2.548478329429561e-06,
702
+ "loss": 0.6765,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.5576856047403277,
707
+ "grad_norm": 0.9321595225209163,
708
+ "learning_rate": 2.5e-06,
709
+ "loss": 0.7459,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.5632624607877309,
714
+ "grad_norm": 0.8642803835512484,
715
+ "learning_rate": 2.4515216705704396e-06,
716
+ "loss": 0.6295,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.5688393168351342,
721
+ "grad_norm": 0.8770432551457372,
722
+ "learning_rate": 2.403061571857958e-06,
723
+ "loss": 0.5756,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.5744161728825374,
728
+ "grad_norm": 0.986644075495802,
729
+ "learning_rate": 2.3546379277238107e-06,
730
+ "loss": 0.7433,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.5799930289299408,
735
+ "grad_norm": 0.9151759455914666,
736
+ "learning_rate": 2.3062689483201732e-06,
737
+ "loss": 0.6835,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.585569884977344,
742
+ "grad_norm": 1.0566592626672804,
743
+ "learning_rate": 2.2579728232420524e-06,
744
+ "loss": 0.7049,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.5911467410247473,
749
+ "grad_norm": 0.8911833907323385,
750
+ "learning_rate": 2.2097677146869242e-06,
751
+ "loss": 0.6252,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.5967235970721506,
756
+ "grad_norm": 3.583992947348307,
757
+ "learning_rate": 2.161671750624673e-06,
758
+ "loss": 0.7175,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.6023004531195538,
763
+ "grad_norm": 0.8470926199178831,
764
+ "learning_rate": 2.113703017980399e-06,
765
+ "loss": 0.6039,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.6078773091669571,
770
+ "grad_norm": 0.9202011923092919,
771
+ "learning_rate": 2.0658795558326745e-06,
772
+ "loss": 0.675,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.6134541652143604,
777
+ "grad_norm": 0.991676719260929,
778
+ "learning_rate": 2.0182193486297757e-06,
779
+ "loss": 0.8416,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.6190310212617637,
784
+ "grad_norm": 0.9920121314417771,
785
+ "learning_rate": 1.970740319426474e-06,
786
+ "loss": 0.7869,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.624607877309167,
791
+ "grad_norm": 0.9147914111270489,
792
+ "learning_rate": 1.9234603231439e-06,
793
+ "loss": 0.6715,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.6301847333565702,
798
+ "grad_norm": 0.9960901454429568,
799
+ "learning_rate": 1.876397139855047e-06,
800
+ "loss": 0.8459,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.6357615894039735,
805
+ "grad_norm": 0.8398771049626784,
806
+ "learning_rate": 1.8295684680984064e-06,
807
+ "loss": 0.6327,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.6413384454513767,
812
+ "grad_norm": 0.8848277584910325,
813
+ "learning_rate": 1.7829919182222752e-06,
814
+ "loss": 0.6674,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.6469153014987801,
819
+ "grad_norm": 0.9599403253441103,
820
+ "learning_rate": 1.7366850057622176e-06,
821
+ "loss": 0.7381,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.6524921575461834,
826
+ "grad_norm": 0.8633918886732347,
827
+ "learning_rate": 1.6906651448541977e-06,
828
+ "loss": 0.5713,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.6580690135935866,
833
+ "grad_norm": 0.9564730887800509,
834
+ "learning_rate": 1.6449496416858285e-06,
835
+ "loss": 0.7964,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.6636458696409899,
840
+ "grad_norm": 0.9220167090814314,
841
+ "learning_rate": 1.5995556879882246e-06,
842
+ "loss": 0.7074,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.6692227256883931,
847
+ "grad_norm": 0.9412177200866909,
848
+ "learning_rate": 1.5545003545708942e-06,
849
+ "loss": 0.6798,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.6747995817357965,
854
+ "grad_norm": 0.8799708797193134,
855
+ "learning_rate": 1.509800584902108e-06,
856
+ "loss": 0.636,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.6803764377831997,
861
+ "grad_norm": 0.8746008313087483,
862
+ "learning_rate": 1.4654731887371524e-06,
863
+ "loss": 0.6517,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.685953293830603,
868
+ "grad_norm": 0.8622866280586909,
869
+ "learning_rate": 1.421534835796867e-06,
870
+ "loss": 0.5685,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.6915301498780063,
875
+ "grad_norm": 0.9161469277312331,
876
+ "learning_rate": 1.3780020494988447e-06,
877
+ "loss": 0.7142,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.6971070059254095,
882
+ "grad_norm": 0.8834589774119394,
883
+ "learning_rate": 1.3348912007436538e-06,
884
+ "loss": 0.6794,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.7026838619728129,
889
+ "grad_norm": 0.8420150113363432,
890
+ "learning_rate": 1.2922185017584038e-06,
891
+ "loss": 0.5548,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.7082607180202161,
896
+ "grad_norm": 0.9186571271373966,
897
+ "learning_rate": 1.2500000000000007e-06,
898
+ "loss": 0.7093,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.7138375740676194,
903
+ "grad_norm": 0.9024224044680166,
904
+ "learning_rate": 1.2082515721203429e-06,
905
+ "loss": 0.601,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.7194144301150227,
910
+ "grad_norm": 0.8730115171814332,
911
+ "learning_rate": 1.1669889179957725e-06,
912
+ "loss": 0.6485,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.7249912861624259,
917
+ "grad_norm": 2.560680193595368,
918
+ "learning_rate": 1.1262275548229852e-06,
919
+ "loss": 0.681,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.7305681422098292,
924
+ "grad_norm": 0.8433376742578463,
925
+ "learning_rate": 1.085982811283654e-06,
926
+ "loss": 0.6025,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.7361449982572325,
931
+ "grad_norm": 0.9000811460890688,
932
+ "learning_rate": 1.0462698217799333e-06,
933
+ "loss": 0.7098,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.7417218543046358,
938
+ "grad_norm": 0.9015484414513791,
939
+ "learning_rate": 1.0071035207430352e-06,
940
+ "loss": 0.6939,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.747298710352039,
945
+ "grad_norm": 0.924647234962446,
946
+ "learning_rate": 9.68498637016993e-07,
947
+ "loss": 0.7219,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.7528755663994423,
952
+ "grad_norm": 0.9622683692067883,
953
+ "learning_rate": 9.304696883197542e-07,
954
+ "loss": 0.7445,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.7584524224468456,
959
+ "grad_norm": 1.0018020723323282,
960
+ "learning_rate": 8.930309757836517e-07,
961
+ "loss": 0.7285,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.7640292784942488,
966
+ "grad_norm": 1.0034101578791559,
967
+ "learning_rate": 8.561965785773413e-07,
968
+ "loss": 0.647,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.7696061345416522,
973
+ "grad_norm": 0.865650213772322,
974
+ "learning_rate": 8.19980348611194e-07,
975
+ "loss": 0.6588,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.7751829905890554,
980
+ "grad_norm": 0.9237880174335488,
981
+ "learning_rate": 7.843959053281663e-07,
982
+ "loss": 0.738,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.7807598466364587,
987
+ "grad_norm": 0.992180072952141,
988
+ "learning_rate": 7.494566305820788e-07,
989
+ "loss": 0.7533,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.786336702683862,
994
+ "grad_norm": 0.8845919723729968,
995
+ "learning_rate": 7.151756636052529e-07,
996
+ "loss": 0.6062,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.7919135587312652,
1001
+ "grad_norm": 0.9575278544789321,
1002
+ "learning_rate": 6.815658960673782e-07,
1003
+ "loss": 0.7661,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.7974904147786686,
1008
+ "grad_norm": 1.060097465810906,
1009
+ "learning_rate": 6.48639967227489e-07,
1010
+ "loss": 0.7093,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.8030672708260718,
1015
+ "grad_norm": 1.1137158210751135,
1016
+ "learning_rate": 6.164102591808482e-07,
1017
+ "loss": 0.6516,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.8086441268734751,
1022
+ "grad_norm": 0.9467474421643487,
1023
+ "learning_rate": 5.848888922025553e-07,
1024
+ "loss": 0.7106,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.8142209829208783,
1029
+ "grad_norm": 0.977712019438005,
1030
+ "learning_rate": 5.540877201896e-07,
1031
+ "loss": 0.6485,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.8197978389682816,
1036
+ "grad_norm": 1.2725548643418227,
1037
+ "learning_rate": 5.240183262031021e-07,
1038
+ "loss": 0.7106,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.825374695015685,
1043
+ "grad_norm": 0.9531375340902994,
1044
+ "learning_rate": 4.946920181123904e-07,
1045
+ "loss": 0.6352,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.8309515510630882,
1050
+ "grad_norm": 0.8239496228158747,
1051
+ "learning_rate": 4.661198243425813e-07,
1052
+ "loss": 0.5812,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.8365284071104915,
1057
+ "grad_norm": 1.4768742600927571,
1058
+ "learning_rate": 4.383124897272331e-07,
1059
+ "loss": 0.825,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.8421052631578947,
1064
+ "grad_norm": 0.8936174846742114,
1065
+ "learning_rate": 4.1128047146765936e-07,
1066
+ "loss": 0.7137,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.847682119205298,
1071
+ "grad_norm": 0.868290680328461,
1072
+ "learning_rate": 3.8503393520039734e-07,
1073
+ "loss": 0.646,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.8532589752527013,
1078
+ "grad_norm": 0.9170777878398306,
1079
+ "learning_rate": 3.595827511743341e-07,
1080
+ "loss": 0.6338,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.8588358313001045,
1085
+ "grad_norm": 0.8709479986895221,
1086
+ "learning_rate": 3.3493649053890325e-07,
1087
+ "loss": 0.6942,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.8644126873475079,
1092
+ "grad_norm": 1.015273029250277,
1093
+ "learning_rate": 3.111044217447731e-07,
1094
+ "loss": 0.8455,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.8699895433949111,
1099
+ "grad_norm": 1.8953728977728321,
1100
+ "learning_rate": 2.880955070583555e-07,
1101
+ "loss": 0.8089,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.8755663994423144,
1106
+ "grad_norm": 1.0266628340926212,
1107
+ "learning_rate": 2.6591839919146963e-07,
1108
+ "loss": 0.6747,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.8811432554897177,
1113
+ "grad_norm": 1.0638475327851682,
1114
+ "learning_rate": 2.445814380474057e-07,
1115
+ "loss": 0.6979,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.8867201115371209,
1120
+ "grad_norm": 0.9287481759641896,
1121
+ "learning_rate": 2.240926475846336e-07,
1122
+ "loss": 0.7963,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.8922969675845243,
1127
+ "grad_norm": 0.8785430203193436,
1128
+ "learning_rate": 2.044597327993153e-07,
1129
+ "loss": 0.6534,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.8978738236319275,
1134
+ "grad_norm": 0.953415594296327,
1135
+ "learning_rate": 1.8569007682777417e-07,
1136
+ "loss": 0.7474,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.9034506796793308,
1141
+ "grad_norm": 0.9294478803532011,
1142
+ "learning_rate": 1.6779073816999864e-07,
1143
+ "loss": 0.7906,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.909027535726734,
1148
+ "grad_norm": 0.8384613909869523,
1149
+ "learning_rate": 1.507684480352292e-07,
1150
+ "loss": 0.6377,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.9146043917741373,
1155
+ "grad_norm": 0.8835908163025235,
1156
+ "learning_rate": 1.3462960781062433e-07,
1157
+ "loss": 0.6392,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.9201812478215406,
1162
+ "grad_norm": 0.8449058090284122,
1163
+ "learning_rate": 1.1938028665396172e-07,
1164
+ "loss": 0.5656,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.9257581038689439,
1169
+ "grad_norm": 0.9392723321505706,
1170
+ "learning_rate": 1.0502621921127776e-07,
1171
+ "loss": 0.7239,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.9313349599163472,
1176
+ "grad_norm": 0.8758199104024277,
1177
+ "learning_rate": 9.157280346029918e-08,
1178
+ "loss": 0.6666,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.9369118159637504,
1183
+ "grad_norm": 0.8830370044979928,
1184
+ "learning_rate": 7.902509868048552e-08,
1185
+ "loss": 0.6846,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.9424886720111537,
1190
+ "grad_norm": 0.8870739682602913,
1191
+ "learning_rate": 6.738782355044048e-08,
1192
+ "loss": 0.7071,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.948065528058557,
1197
+ "grad_norm": 0.8732031194960946,
1198
+ "learning_rate": 5.6665354373411085e-08,
1199
+ "loss": 0.7037,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.9536423841059603,
1204
+ "grad_norm": 0.9251119129299412,
1205
+ "learning_rate": 4.6861723431538273e-08,
1206
+ "loss": 0.6949,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.9592192401533636,
1211
+ "grad_norm": 0.8254069704702977,
1212
+ "learning_rate": 3.798061746947995e-08,
1213
+ "loss": 0.5747,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.9647960962007668,
1218
+ "grad_norm": 0.8556828230063313,
1219
+ "learning_rate": 3.0025376307977474e-08,
1220
+ "loss": 0.6367,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.9703729522481701,
1225
+ "grad_norm": 0.8964787284563904,
1226
+ "learning_rate": 2.299899158788671e-08,
1227
+ "loss": 0.6943,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.9759498082955733,
1232
+ "grad_norm": 0.8529908965639459,
1233
+ "learning_rate": 1.6904105645142443e-08,
1234
+ "loss": 0.6373,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.9815266643429766,
1239
+ "grad_norm": 0.8934738534392561,
1240
+ "learning_rate": 1.1743010517085428e-08,
1241
+ "loss": 0.6968,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.98710352039038,
1246
+ "grad_norm": 0.9302061985515149,
1247
+ "learning_rate": 7.517647080519941e-09,
1248
+ "loss": 0.7773,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.9926803764377832,
1253
+ "grad_norm": 0.9858177539703182,
1254
+ "learning_rate": 4.229604321829561e-09,
1255
+ "loss": 0.7393,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.9982572324851865,
1260
+ "grad_norm": 0.9326264974645483,
1261
+ "learning_rate": 1.8801187394248966e-09,
1262
+ "loss": 0.7246,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 1.0,
1267
+ "grad_norm": 0.9326264974645483,
1268
+ "learning_rate": 4.700738787466463e-10,
1269
+ "loss": 0.9,
1270
+ "step": 180
1271
+ }
1272
+ ],
1273
+ "logging_steps": 1,
1274
+ "max_steps": 180,
1275
+ "num_input_tokens_seen": 0,
1276
+ "num_train_epochs": 1,
1277
+ "save_steps": 500,
1278
+ "stateful_callbacks": {
1279
+ "TrainerControl": {
1280
+ "args": {
1281
+ "should_epoch_stop": false,
1282
+ "should_evaluate": false,
1283
+ "should_log": false,
1284
+ "should_save": true,
1285
+ "should_training_stop": true
1286
+ },
1287
+ "attributes": {}
1288
+ }
1289
+ },
1290
+ "total_flos": 27643248377856.0,
1291
+ "train_batch_size": 1,
1292
+ "trial_name": null,
1293
+ "trial_params": null
1294
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e527706eb629c68e33b0663c67e6d43111ad105b3f92d26bc491f29fe51f24a0
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)