Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- config.json +30 -0
- generation_config.json +13 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +405 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +1294 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if message.content is string %}
|
27 |
+
{%- set content = message.content %}
|
28 |
+
{%- else %}
|
29 |
+
{%- set content = '' %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
33 |
+
{%- elif message.role == "assistant" %}
|
34 |
+
{%- set reasoning_content = '' %}
|
35 |
+
{%- if message.reasoning_content is string %}
|
36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
37 |
+
{%- else %}
|
38 |
+
{%- if '</think>' in content %}
|
39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endif %}
|
43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
46 |
+
{%- else %}
|
47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
48 |
+
{%- endif %}
|
49 |
+
{%- else %}
|
50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
51 |
+
{%- endif %}
|
52 |
+
{%- if message.tool_calls %}
|
53 |
+
{%- for tool_call in message.tool_calls %}
|
54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
55 |
+
{{- '\n' }}
|
56 |
+
{%- endif %}
|
57 |
+
{%- if tool_call.function %}
|
58 |
+
{%- set tool_call = tool_call.function %}
|
59 |
+
{%- endif %}
|
60 |
+
{{- '<tool_call>\n{"name": "' }}
|
61 |
+
{{- tool_call.name }}
|
62 |
+
{{- '", "arguments": ' }}
|
63 |
+
{%- if tool_call.arguments is string %}
|
64 |
+
{{- tool_call.arguments }}
|
65 |
+
{%- else %}
|
66 |
+
{{- tool_call.arguments | tojson }}
|
67 |
+
{%- endif %}
|
68 |
+
{{- '}\n</tool_call>' }}
|
69 |
+
{%- endfor %}
|
70 |
+
{%- endif %}
|
71 |
+
{{- '<|im_end|>\n' }}
|
72 |
+
{%- elif message.role == "tool" %}
|
73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
74 |
+
{{- '<|im_start|>user' }}
|
75 |
+
{%- endif %}
|
76 |
+
{{- '\n<tool_response>\n' }}
|
77 |
+
{{- content }}
|
78 |
+
{{- '\n</tool_response>' }}
|
79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
80 |
+
{{- '<|im_end|>\n' }}
|
81 |
+
{%- endif %}
|
82 |
+
{%- endif %}
|
83 |
+
{%- endfor %}
|
84 |
+
{%- if add_generation_prompt %}
|
85 |
+
{{- '<|im_start|>assistant\n' }}
|
86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
88 |
+
{%- endif %}
|
89 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2560,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 9728,
|
14 |
+
"max_position_embeddings": 40960,
|
15 |
+
"max_window_layers": 36,
|
16 |
+
"model_type": "qwen3",
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 36,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": true,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.52.4",
|
27 |
+
"use_cache": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.52.4"
|
13 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step179
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e2425215597484c88d1ed9575e711402c9cc3bf813103ba11743cfd1d4da3db
|
3 |
+
size 4967215360
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7469bcaedf2118d7fc31f6a8cb4617af75100f26ce4e3906f6589d4b83d4de06
|
3 |
+
size 3077766632
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8044936192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
346 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
348 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
350 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
352 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
354 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
356 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
358 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
360 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
362 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
364 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
366 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
404 |
+
}
|
405 |
+
}
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:835f869ea325fd6edf27b48b589309fb66641cb92b45f2fc13d1bb6e8814106c
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:707c86685b9e1f735b18dc919713ae2cd51daab0a09a029c367289ebc04c3592
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 180,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0055768560474032764,
|
14 |
+
"grad_norm": 46.09545673843412,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 1.7007,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.011153712094806553,
|
21 |
+
"grad_norm": 44.46037462061874,
|
22 |
+
"learning_rate": 2.7777777777777776e-07,
|
23 |
+
"loss": 1.6776,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.01673056814220983,
|
28 |
+
"grad_norm": 40.73202594632966,
|
29 |
+
"learning_rate": 5.555555555555555e-07,
|
30 |
+
"loss": 1.5002,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.022307424189613106,
|
35 |
+
"grad_norm": 42.88149317876023,
|
36 |
+
"learning_rate": 8.333333333333333e-07,
|
37 |
+
"loss": 1.6238,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.027884280237016383,
|
42 |
+
"grad_norm": 42.513311455243326,
|
43 |
+
"learning_rate": 1.111111111111111e-06,
|
44 |
+
"loss": 1.678,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03346113628441966,
|
49 |
+
"grad_norm": 43.24081118630191,
|
50 |
+
"learning_rate": 1.3888888888888892e-06,
|
51 |
+
"loss": 1.7263,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.03903799233182294,
|
56 |
+
"grad_norm": 25.77384950516741,
|
57 |
+
"learning_rate": 1.6666666666666667e-06,
|
58 |
+
"loss": 1.272,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.04461484837922621,
|
63 |
+
"grad_norm": 24.137113597713526,
|
64 |
+
"learning_rate": 1.944444444444445e-06,
|
65 |
+
"loss": 1.1886,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.050191704426629485,
|
70 |
+
"grad_norm": 11.629783818575346,
|
71 |
+
"learning_rate": 2.222222222222222e-06,
|
72 |
+
"loss": 1.2781,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.055768560474032766,
|
77 |
+
"grad_norm": 8.00658343314912,
|
78 |
+
"learning_rate": 2.5e-06,
|
79 |
+
"loss": 1.0554,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.06134541652143604,
|
84 |
+
"grad_norm": 7.16421136479377,
|
85 |
+
"learning_rate": 2.7777777777777783e-06,
|
86 |
+
"loss": 1.172,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.06692227256883931,
|
91 |
+
"grad_norm": 4.137822360489128,
|
92 |
+
"learning_rate": 3.055555555555556e-06,
|
93 |
+
"loss": 1.0006,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.0724991286162426,
|
98 |
+
"grad_norm": 2.9965048555106204,
|
99 |
+
"learning_rate": 3.3333333333333333e-06,
|
100 |
+
"loss": 0.8589,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.07807598466364588,
|
105 |
+
"grad_norm": 3.1452698509974435,
|
106 |
+
"learning_rate": 3.6111111111111115e-06,
|
107 |
+
"loss": 1.0973,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.08365284071104914,
|
112 |
+
"grad_norm": 2.8688258039939702,
|
113 |
+
"learning_rate": 3.88888888888889e-06,
|
114 |
+
"loss": 1.2093,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.08922969675845242,
|
119 |
+
"grad_norm": 2.0484453697226055,
|
120 |
+
"learning_rate": 4.166666666666667e-06,
|
121 |
+
"loss": 0.9244,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.0948065528058557,
|
126 |
+
"grad_norm": 2.4395289504901303,
|
127 |
+
"learning_rate": 4.444444444444444e-06,
|
128 |
+
"loss": 0.9074,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.10038340885325897,
|
133 |
+
"grad_norm": 3.3112350184991084,
|
134 |
+
"learning_rate": 4.722222222222222e-06,
|
135 |
+
"loss": 0.9056,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.10596026490066225,
|
140 |
+
"grad_norm": 2.2238505337460017,
|
141 |
+
"learning_rate": 5e-06,
|
142 |
+
"loss": 0.9156,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.11153712094806553,
|
147 |
+
"grad_norm": 1.6023122355959452,
|
148 |
+
"learning_rate": 4.999529926121254e-06,
|
149 |
+
"loss": 0.7145,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.1171139769954688,
|
154 |
+
"grad_norm": 1.5747014721624342,
|
155 |
+
"learning_rate": 4.998119881260576e-06,
|
156 |
+
"loss": 0.9797,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.12269083304287208,
|
161 |
+
"grad_norm": 1.3008124678483608,
|
162 |
+
"learning_rate": 4.995770395678171e-06,
|
163 |
+
"loss": 0.8005,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.12826768909027536,
|
168 |
+
"grad_norm": 1.3341513132245302,
|
169 |
+
"learning_rate": 4.99248235291948e-06,
|
170 |
+
"loss": 0.9707,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.13384454513767863,
|
175 |
+
"grad_norm": 1.2836163377989422,
|
176 |
+
"learning_rate": 4.9882569894829146e-06,
|
177 |
+
"loss": 0.8303,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.13942140118508192,
|
182 |
+
"grad_norm": 1.5625132921969171,
|
183 |
+
"learning_rate": 4.983095894354858e-06,
|
184 |
+
"loss": 1.012,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1449982572324852,
|
189 |
+
"grad_norm": 1.3279470446330688,
|
190 |
+
"learning_rate": 4.977001008412113e-06,
|
191 |
+
"loss": 0.8311,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.15057511327988846,
|
196 |
+
"grad_norm": 1.1984169005450507,
|
197 |
+
"learning_rate": 4.969974623692023e-06,
|
198 |
+
"loss": 0.701,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.15615196932729175,
|
203 |
+
"grad_norm": 1.2333632916915551,
|
204 |
+
"learning_rate": 4.962019382530521e-06,
|
205 |
+
"loss": 0.8799,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.16172882537469502,
|
210 |
+
"grad_norm": 1.1133972779802328,
|
211 |
+
"learning_rate": 4.953138276568462e-06,
|
212 |
+
"loss": 0.75,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.16730568142209828,
|
217 |
+
"grad_norm": 1.0517214425691086,
|
218 |
+
"learning_rate": 4.943334645626589e-06,
|
219 |
+
"loss": 0.7046,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.17288253746950158,
|
224 |
+
"grad_norm": 0.9434629605801058,
|
225 |
+
"learning_rate": 4.93261217644956e-06,
|
226 |
+
"loss": 0.6824,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.17845939351690485,
|
231 |
+
"grad_norm": 1.1847049987820477,
|
232 |
+
"learning_rate": 4.9209749013195155e-06,
|
233 |
+
"loss": 0.8257,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.1840362495643081,
|
238 |
+
"grad_norm": 1.0458338052848428,
|
239 |
+
"learning_rate": 4.908427196539701e-06,
|
240 |
+
"loss": 0.8103,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.1896131056117114,
|
245 |
+
"grad_norm": 1.0107452620708213,
|
246 |
+
"learning_rate": 4.894973780788722e-06,
|
247 |
+
"loss": 0.8077,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.19518996165911467,
|
252 |
+
"grad_norm": 1.0732542601644082,
|
253 |
+
"learning_rate": 4.8806197133460385e-06,
|
254 |
+
"loss": 0.83,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.20076681770651794,
|
259 |
+
"grad_norm": 1.111873065908315,
|
260 |
+
"learning_rate": 4.865370392189377e-06,
|
261 |
+
"loss": 0.8261,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.20634367375392124,
|
266 |
+
"grad_norm": 0.9469124459097857,
|
267 |
+
"learning_rate": 4.849231551964771e-06,
|
268 |
+
"loss": 0.7354,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.2119205298013245,
|
273 |
+
"grad_norm": 0.9890209354758053,
|
274 |
+
"learning_rate": 4.832209261830002e-06,
|
275 |
+
"loss": 0.7614,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.21749738584872777,
|
280 |
+
"grad_norm": 0.9617476508331165,
|
281 |
+
"learning_rate": 4.814309923172227e-06,
|
282 |
+
"loss": 0.6634,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.22307424189613106,
|
287 |
+
"grad_norm": 0.8693853556809209,
|
288 |
+
"learning_rate": 4.7955402672006855e-06,
|
289 |
+
"loss": 0.6524,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.22865109794353433,
|
294 |
+
"grad_norm": 1.1164427987030467,
|
295 |
+
"learning_rate": 4.775907352415367e-06,
|
296 |
+
"loss": 0.9437,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.2342279539909376,
|
301 |
+
"grad_norm": 1.0342203325734225,
|
302 |
+
"learning_rate": 4.755418561952595e-06,
|
303 |
+
"loss": 0.7833,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.2398048100383409,
|
308 |
+
"grad_norm": 1.0381130170634878,
|
309 |
+
"learning_rate": 4.734081600808531e-06,
|
310 |
+
"loss": 0.8537,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.24538166608574416,
|
315 |
+
"grad_norm": 0.980064465437933,
|
316 |
+
"learning_rate": 4.711904492941644e-06,
|
317 |
+
"loss": 0.7711,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.25095852213314745,
|
322 |
+
"grad_norm": 2.4464904323304255,
|
323 |
+
"learning_rate": 4.688895578255228e-06,
|
324 |
+
"loss": 0.8071,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.2565353781805507,
|
329 |
+
"grad_norm": 0.9568068666237374,
|
330 |
+
"learning_rate": 4.665063509461098e-06,
|
331 |
+
"loss": 0.7486,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.262112234227954,
|
336 |
+
"grad_norm": 0.9773834471749688,
|
337 |
+
"learning_rate": 4.640417248825667e-06,
|
338 |
+
"loss": 0.6626,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.26768909027535726,
|
343 |
+
"grad_norm": 0.9467873226243072,
|
344 |
+
"learning_rate": 4.614966064799603e-06,
|
345 |
+
"loss": 0.7737,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.2732659463227605,
|
350 |
+
"grad_norm": 0.929090416098371,
|
351 |
+
"learning_rate": 4.588719528532342e-06,
|
352 |
+
"loss": 0.7288,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.27884280237016384,
|
357 |
+
"grad_norm": 0.9558116358409616,
|
358 |
+
"learning_rate": 4.561687510272767e-06,
|
359 |
+
"loss": 0.7173,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.2844196584175671,
|
364 |
+
"grad_norm": 1.0358016086386252,
|
365 |
+
"learning_rate": 4.533880175657419e-06,
|
366 |
+
"loss": 0.8558,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2899965144649704,
|
371 |
+
"grad_norm": 0.9268356298097264,
|
372 |
+
"learning_rate": 4.50530798188761e-06,
|
373 |
+
"loss": 0.6913,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.29557337051237365,
|
378 |
+
"grad_norm": 0.9026491423974176,
|
379 |
+
"learning_rate": 4.475981673796899e-06,
|
380 |
+
"loss": 0.6573,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.3011502265597769,
|
385 |
+
"grad_norm": 0.9341984552378991,
|
386 |
+
"learning_rate": 4.445912279810401e-06,
|
387 |
+
"loss": 0.7178,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.3067270826071802,
|
392 |
+
"grad_norm": 0.963698636099554,
|
393 |
+
"learning_rate": 4.415111107797445e-06,
|
394 |
+
"loss": 0.672,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.3123039386545835,
|
399 |
+
"grad_norm": 1.0123866280188825,
|
400 |
+
"learning_rate": 4.3835897408191515e-06,
|
401 |
+
"loss": 0.7958,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.31788079470198677,
|
406 |
+
"grad_norm": 1.0536090394015367,
|
407 |
+
"learning_rate": 4.351360032772512e-06,
|
408 |
+
"loss": 0.8384,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.32345765074939004,
|
413 |
+
"grad_norm": 1.005997664037765,
|
414 |
+
"learning_rate": 4.318434103932622e-06,
|
415 |
+
"loss": 0.8511,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.3290345067967933,
|
420 |
+
"grad_norm": 0.9082165011415732,
|
421 |
+
"learning_rate": 4.284824336394748e-06,
|
422 |
+
"loss": 0.6731,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.33461136284419657,
|
427 |
+
"grad_norm": 0.9309889749980601,
|
428 |
+
"learning_rate": 4.250543369417921e-06,
|
429 |
+
"loss": 0.7276,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.34018821889159984,
|
434 |
+
"grad_norm": 1.7819442287605565,
|
435 |
+
"learning_rate": 4.215604094671835e-06,
|
436 |
+
"loss": 0.7831,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.34576507493900316,
|
441 |
+
"grad_norm": 0.9434498292744896,
|
442 |
+
"learning_rate": 4.180019651388807e-06,
|
443 |
+
"loss": 0.7503,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.3513419309864064,
|
448 |
+
"grad_norm": 1.0424541071897502,
|
449 |
+
"learning_rate": 4.14380342142266e-06,
|
450 |
+
"loss": 0.9153,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.3569187870338097,
|
455 |
+
"grad_norm": 0.9753148306326342,
|
456 |
+
"learning_rate": 4.106969024216348e-06,
|
457 |
+
"loss": 0.6555,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.36249564308121296,
|
462 |
+
"grad_norm": 0.964467277240988,
|
463 |
+
"learning_rate": 4.069530311680247e-06,
|
464 |
+
"loss": 0.7372,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.3680724991286162,
|
469 |
+
"grad_norm": 1.1418604292487458,
|
470 |
+
"learning_rate": 4.031501362983007e-06,
|
471 |
+
"loss": 0.7585,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.3736493551760195,
|
476 |
+
"grad_norm": 0.9125259121774503,
|
477 |
+
"learning_rate": 3.992896479256966e-06,
|
478 |
+
"loss": 0.6934,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.3792262112234228,
|
483 |
+
"grad_norm": 0.9183210408388318,
|
484 |
+
"learning_rate": 3.953730178220067e-06,
|
485 |
+
"loss": 0.6741,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.3848030672708261,
|
490 |
+
"grad_norm": 0.9841348365534922,
|
491 |
+
"learning_rate": 3.914017188716347e-06,
|
492 |
+
"loss": 0.7713,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.39037992331822935,
|
497 |
+
"grad_norm": 0.9397953829688301,
|
498 |
+
"learning_rate": 3.8737724451770155e-06,
|
499 |
+
"loss": 0.6898,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.3959567793656326,
|
504 |
+
"grad_norm": 0.9360968357631917,
|
505 |
+
"learning_rate": 3.833011082004229e-06,
|
506 |
+
"loss": 0.7356,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.4015336354130359,
|
511 |
+
"grad_norm": 1.0490874310335498,
|
512 |
+
"learning_rate": 3.7917484278796578e-06,
|
513 |
+
"loss": 0.8834,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.40711049146043915,
|
518 |
+
"grad_norm": 0.8729992951101984,
|
519 |
+
"learning_rate": 3.7500000000000005e-06,
|
520 |
+
"loss": 0.6581,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.4126873475078425,
|
525 |
+
"grad_norm": 0.8526096559762923,
|
526 |
+
"learning_rate": 3.7077814982415966e-06,
|
527 |
+
"loss": 0.6796,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.41826420355524574,
|
532 |
+
"grad_norm": 0.9123193201559427,
|
533 |
+
"learning_rate": 3.665108799256348e-06,
|
534 |
+
"loss": 0.6747,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.423841059602649,
|
539 |
+
"grad_norm": 0.8692473859121223,
|
540 |
+
"learning_rate": 3.621997950501156e-06,
|
541 |
+
"loss": 0.6573,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.4294179156500523,
|
546 |
+
"grad_norm": 0.9141140630813748,
|
547 |
+
"learning_rate": 3.578465164203134e-06,
|
548 |
+
"loss": 0.6013,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.43499477169745554,
|
553 |
+
"grad_norm": 1.0607296974506348,
|
554 |
+
"learning_rate": 3.5345268112628485e-06,
|
555 |
+
"loss": 0.897,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.44057162774485886,
|
560 |
+
"grad_norm": 1.027907705537933,
|
561 |
+
"learning_rate": 3.4901994150978926e-06,
|
562 |
+
"loss": 0.8139,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.44614848379226213,
|
567 |
+
"grad_norm": 0.8964908897959806,
|
568 |
+
"learning_rate": 3.4454996454291066e-06,
|
569 |
+
"loss": 0.682,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.4517253398396654,
|
574 |
+
"grad_norm": 0.9696808820116304,
|
575 |
+
"learning_rate": 3.400444312011776e-06,
|
576 |
+
"loss": 0.7677,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.45730219588706866,
|
581 |
+
"grad_norm": 0.9538347785493502,
|
582 |
+
"learning_rate": 3.3550503583141726e-06,
|
583 |
+
"loss": 0.7707,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.46287905193447193,
|
588 |
+
"grad_norm": 0.8834434922285562,
|
589 |
+
"learning_rate": 3.3093348551458033e-06,
|
590 |
+
"loss": 0.7254,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.4684559079818752,
|
595 |
+
"grad_norm": 0.9664583802329054,
|
596 |
+
"learning_rate": 3.2633149942377835e-06,
|
597 |
+
"loss": 0.6009,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.4740327640292785,
|
602 |
+
"grad_norm": 0.9989900249921821,
|
603 |
+
"learning_rate": 3.217008081777726e-06,
|
604 |
+
"loss": 0.7277,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.4796096200766818,
|
609 |
+
"grad_norm": 0.9641224372984417,
|
610 |
+
"learning_rate": 3.1704315319015936e-06,
|
611 |
+
"loss": 0.7693,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.48518647612408505,
|
616 |
+
"grad_norm": 0.8563738741272415,
|
617 |
+
"learning_rate": 3.1236028601449534e-06,
|
618 |
+
"loss": 0.5502,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.4907633321714883,
|
623 |
+
"grad_norm": 0.9814456923681252,
|
624 |
+
"learning_rate": 3.0765396768561005e-06,
|
625 |
+
"loss": 0.7591,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.4963401882188916,
|
630 |
+
"grad_norm": 1.0031797145449588,
|
631 |
+
"learning_rate": 3.0292596805735275e-06,
|
632 |
+
"loss": 0.7336,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.5019170442662949,
|
637 |
+
"grad_norm": 1.0307972932412588,
|
638 |
+
"learning_rate": 2.9817806513702247e-06,
|
639 |
+
"loss": 0.8728,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.5074939003136981,
|
644 |
+
"grad_norm": 0.9121639360068265,
|
645 |
+
"learning_rate": 2.9341204441673267e-06,
|
646 |
+
"loss": 0.7234,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.5130707563611014,
|
651 |
+
"grad_norm": 0.9266082791067043,
|
652 |
+
"learning_rate": 2.8862969820196017e-06,
|
653 |
+
"loss": 0.6637,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.5186476124085047,
|
658 |
+
"grad_norm": 0.9817424775807924,
|
659 |
+
"learning_rate": 2.8383282493753282e-06,
|
660 |
+
"loss": 0.818,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.524224468455908,
|
665 |
+
"grad_norm": 0.9290655450825701,
|
666 |
+
"learning_rate": 2.7902322853130758e-06,
|
667 |
+
"loss": 0.7372,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.5298013245033113,
|
672 |
+
"grad_norm": 0.9630341129207757,
|
673 |
+
"learning_rate": 2.742027176757948e-06,
|
674 |
+
"loss": 0.786,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.5353781805507145,
|
679 |
+
"grad_norm": 0.8736837998218376,
|
680 |
+
"learning_rate": 2.6937310516798276e-06,
|
681 |
+
"loss": 0.6546,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.5409550365981178,
|
686 |
+
"grad_norm": 0.970695862336814,
|
687 |
+
"learning_rate": 2.6453620722761897e-06,
|
688 |
+
"loss": 0.6716,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.546531892645521,
|
693 |
+
"grad_norm": 0.9311590205600201,
|
694 |
+
"learning_rate": 2.5969384281420425e-06,
|
695 |
+
"loss": 0.6955,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.5521087486929244,
|
700 |
+
"grad_norm": 0.9022156745489164,
|
701 |
+
"learning_rate": 2.548478329429561e-06,
|
702 |
+
"loss": 0.6765,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.5576856047403277,
|
707 |
+
"grad_norm": 0.9321595225209163,
|
708 |
+
"learning_rate": 2.5e-06,
|
709 |
+
"loss": 0.7459,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.5632624607877309,
|
714 |
+
"grad_norm": 0.8642803835512484,
|
715 |
+
"learning_rate": 2.4515216705704396e-06,
|
716 |
+
"loss": 0.6295,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.5688393168351342,
|
721 |
+
"grad_norm": 0.8770432551457372,
|
722 |
+
"learning_rate": 2.403061571857958e-06,
|
723 |
+
"loss": 0.5756,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.5744161728825374,
|
728 |
+
"grad_norm": 0.986644075495802,
|
729 |
+
"learning_rate": 2.3546379277238107e-06,
|
730 |
+
"loss": 0.7433,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.5799930289299408,
|
735 |
+
"grad_norm": 0.9151759455914666,
|
736 |
+
"learning_rate": 2.3062689483201732e-06,
|
737 |
+
"loss": 0.6835,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.585569884977344,
|
742 |
+
"grad_norm": 1.0566592626672804,
|
743 |
+
"learning_rate": 2.2579728232420524e-06,
|
744 |
+
"loss": 0.7049,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.5911467410247473,
|
749 |
+
"grad_norm": 0.8911833907323385,
|
750 |
+
"learning_rate": 2.2097677146869242e-06,
|
751 |
+
"loss": 0.6252,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.5967235970721506,
|
756 |
+
"grad_norm": 3.583992947348307,
|
757 |
+
"learning_rate": 2.161671750624673e-06,
|
758 |
+
"loss": 0.7175,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.6023004531195538,
|
763 |
+
"grad_norm": 0.8470926199178831,
|
764 |
+
"learning_rate": 2.113703017980399e-06,
|
765 |
+
"loss": 0.6039,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.6078773091669571,
|
770 |
+
"grad_norm": 0.9202011923092919,
|
771 |
+
"learning_rate": 2.0658795558326745e-06,
|
772 |
+
"loss": 0.675,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.6134541652143604,
|
777 |
+
"grad_norm": 0.991676719260929,
|
778 |
+
"learning_rate": 2.0182193486297757e-06,
|
779 |
+
"loss": 0.8416,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.6190310212617637,
|
784 |
+
"grad_norm": 0.9920121314417771,
|
785 |
+
"learning_rate": 1.970740319426474e-06,
|
786 |
+
"loss": 0.7869,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.624607877309167,
|
791 |
+
"grad_norm": 0.9147914111270489,
|
792 |
+
"learning_rate": 1.9234603231439e-06,
|
793 |
+
"loss": 0.6715,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.6301847333565702,
|
798 |
+
"grad_norm": 0.9960901454429568,
|
799 |
+
"learning_rate": 1.876397139855047e-06,
|
800 |
+
"loss": 0.8459,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.6357615894039735,
|
805 |
+
"grad_norm": 0.8398771049626784,
|
806 |
+
"learning_rate": 1.8295684680984064e-06,
|
807 |
+
"loss": 0.6327,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.6413384454513767,
|
812 |
+
"grad_norm": 0.8848277584910325,
|
813 |
+
"learning_rate": 1.7829919182222752e-06,
|
814 |
+
"loss": 0.6674,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.6469153014987801,
|
819 |
+
"grad_norm": 0.9599403253441103,
|
820 |
+
"learning_rate": 1.7366850057622176e-06,
|
821 |
+
"loss": 0.7381,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.6524921575461834,
|
826 |
+
"grad_norm": 0.8633918886732347,
|
827 |
+
"learning_rate": 1.6906651448541977e-06,
|
828 |
+
"loss": 0.5713,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.6580690135935866,
|
833 |
+
"grad_norm": 0.9564730887800509,
|
834 |
+
"learning_rate": 1.6449496416858285e-06,
|
835 |
+
"loss": 0.7964,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.6636458696409899,
|
840 |
+
"grad_norm": 0.9220167090814314,
|
841 |
+
"learning_rate": 1.5995556879882246e-06,
|
842 |
+
"loss": 0.7074,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.6692227256883931,
|
847 |
+
"grad_norm": 0.9412177200866909,
|
848 |
+
"learning_rate": 1.5545003545708942e-06,
|
849 |
+
"loss": 0.6798,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.6747995817357965,
|
854 |
+
"grad_norm": 0.8799708797193134,
|
855 |
+
"learning_rate": 1.509800584902108e-06,
|
856 |
+
"loss": 0.636,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.6803764377831997,
|
861 |
+
"grad_norm": 0.8746008313087483,
|
862 |
+
"learning_rate": 1.4654731887371524e-06,
|
863 |
+
"loss": 0.6517,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.685953293830603,
|
868 |
+
"grad_norm": 0.8622866280586909,
|
869 |
+
"learning_rate": 1.421534835796867e-06,
|
870 |
+
"loss": 0.5685,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.6915301498780063,
|
875 |
+
"grad_norm": 0.9161469277312331,
|
876 |
+
"learning_rate": 1.3780020494988447e-06,
|
877 |
+
"loss": 0.7142,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.6971070059254095,
|
882 |
+
"grad_norm": 0.8834589774119394,
|
883 |
+
"learning_rate": 1.3348912007436538e-06,
|
884 |
+
"loss": 0.6794,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.7026838619728129,
|
889 |
+
"grad_norm": 0.8420150113363432,
|
890 |
+
"learning_rate": 1.2922185017584038e-06,
|
891 |
+
"loss": 0.5548,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.7082607180202161,
|
896 |
+
"grad_norm": 0.9186571271373966,
|
897 |
+
"learning_rate": 1.2500000000000007e-06,
|
898 |
+
"loss": 0.7093,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.7138375740676194,
|
903 |
+
"grad_norm": 0.9024224044680166,
|
904 |
+
"learning_rate": 1.2082515721203429e-06,
|
905 |
+
"loss": 0.601,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.7194144301150227,
|
910 |
+
"grad_norm": 0.8730115171814332,
|
911 |
+
"learning_rate": 1.1669889179957725e-06,
|
912 |
+
"loss": 0.6485,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.7249912861624259,
|
917 |
+
"grad_norm": 2.560680193595368,
|
918 |
+
"learning_rate": 1.1262275548229852e-06,
|
919 |
+
"loss": 0.681,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.7305681422098292,
|
924 |
+
"grad_norm": 0.8433376742578463,
|
925 |
+
"learning_rate": 1.085982811283654e-06,
|
926 |
+
"loss": 0.6025,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.7361449982572325,
|
931 |
+
"grad_norm": 0.9000811460890688,
|
932 |
+
"learning_rate": 1.0462698217799333e-06,
|
933 |
+
"loss": 0.7098,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.7417218543046358,
|
938 |
+
"grad_norm": 0.9015484414513791,
|
939 |
+
"learning_rate": 1.0071035207430352e-06,
|
940 |
+
"loss": 0.6939,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.747298710352039,
|
945 |
+
"grad_norm": 0.924647234962446,
|
946 |
+
"learning_rate": 9.68498637016993e-07,
|
947 |
+
"loss": 0.7219,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.7528755663994423,
|
952 |
+
"grad_norm": 0.9622683692067883,
|
953 |
+
"learning_rate": 9.304696883197542e-07,
|
954 |
+
"loss": 0.7445,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.7584524224468456,
|
959 |
+
"grad_norm": 1.0018020723323282,
|
960 |
+
"learning_rate": 8.930309757836517e-07,
|
961 |
+
"loss": 0.7285,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.7640292784942488,
|
966 |
+
"grad_norm": 1.0034101578791559,
|
967 |
+
"learning_rate": 8.561965785773413e-07,
|
968 |
+
"loss": 0.647,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.7696061345416522,
|
973 |
+
"grad_norm": 0.865650213772322,
|
974 |
+
"learning_rate": 8.19980348611194e-07,
|
975 |
+
"loss": 0.6588,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.7751829905890554,
|
980 |
+
"grad_norm": 0.9237880174335488,
|
981 |
+
"learning_rate": 7.843959053281663e-07,
|
982 |
+
"loss": 0.738,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.7807598466364587,
|
987 |
+
"grad_norm": 0.992180072952141,
|
988 |
+
"learning_rate": 7.494566305820788e-07,
|
989 |
+
"loss": 0.7533,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.786336702683862,
|
994 |
+
"grad_norm": 0.8845919723729968,
|
995 |
+
"learning_rate": 7.151756636052529e-07,
|
996 |
+
"loss": 0.6062,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.7919135587312652,
|
1001 |
+
"grad_norm": 0.9575278544789321,
|
1002 |
+
"learning_rate": 6.815658960673782e-07,
|
1003 |
+
"loss": 0.7661,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.7974904147786686,
|
1008 |
+
"grad_norm": 1.060097465810906,
|
1009 |
+
"learning_rate": 6.48639967227489e-07,
|
1010 |
+
"loss": 0.7093,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.8030672708260718,
|
1015 |
+
"grad_norm": 1.1137158210751135,
|
1016 |
+
"learning_rate": 6.164102591808482e-07,
|
1017 |
+
"loss": 0.6516,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.8086441268734751,
|
1022 |
+
"grad_norm": 0.9467474421643487,
|
1023 |
+
"learning_rate": 5.848888922025553e-07,
|
1024 |
+
"loss": 0.7106,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.8142209829208783,
|
1029 |
+
"grad_norm": 0.977712019438005,
|
1030 |
+
"learning_rate": 5.540877201896e-07,
|
1031 |
+
"loss": 0.6485,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.8197978389682816,
|
1036 |
+
"grad_norm": 1.2725548643418227,
|
1037 |
+
"learning_rate": 5.240183262031021e-07,
|
1038 |
+
"loss": 0.7106,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.825374695015685,
|
1043 |
+
"grad_norm": 0.9531375340902994,
|
1044 |
+
"learning_rate": 4.946920181123904e-07,
|
1045 |
+
"loss": 0.6352,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.8309515510630882,
|
1050 |
+
"grad_norm": 0.8239496228158747,
|
1051 |
+
"learning_rate": 4.661198243425813e-07,
|
1052 |
+
"loss": 0.5812,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.8365284071104915,
|
1057 |
+
"grad_norm": 1.4768742600927571,
|
1058 |
+
"learning_rate": 4.383124897272331e-07,
|
1059 |
+
"loss": 0.825,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.8421052631578947,
|
1064 |
+
"grad_norm": 0.8936174846742114,
|
1065 |
+
"learning_rate": 4.1128047146765936e-07,
|
1066 |
+
"loss": 0.7137,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.847682119205298,
|
1071 |
+
"grad_norm": 0.868290680328461,
|
1072 |
+
"learning_rate": 3.8503393520039734e-07,
|
1073 |
+
"loss": 0.646,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.8532589752527013,
|
1078 |
+
"grad_norm": 0.9170777878398306,
|
1079 |
+
"learning_rate": 3.595827511743341e-07,
|
1080 |
+
"loss": 0.6338,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.8588358313001045,
|
1085 |
+
"grad_norm": 0.8709479986895221,
|
1086 |
+
"learning_rate": 3.3493649053890325e-07,
|
1087 |
+
"loss": 0.6942,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.8644126873475079,
|
1092 |
+
"grad_norm": 1.015273029250277,
|
1093 |
+
"learning_rate": 3.111044217447731e-07,
|
1094 |
+
"loss": 0.8455,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.8699895433949111,
|
1099 |
+
"grad_norm": 1.8953728977728321,
|
1100 |
+
"learning_rate": 2.880955070583555e-07,
|
1101 |
+
"loss": 0.8089,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.8755663994423144,
|
1106 |
+
"grad_norm": 1.0266628340926212,
|
1107 |
+
"learning_rate": 2.6591839919146963e-07,
|
1108 |
+
"loss": 0.6747,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.8811432554897177,
|
1113 |
+
"grad_norm": 1.0638475327851682,
|
1114 |
+
"learning_rate": 2.445814380474057e-07,
|
1115 |
+
"loss": 0.6979,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.8867201115371209,
|
1120 |
+
"grad_norm": 0.9287481759641896,
|
1121 |
+
"learning_rate": 2.240926475846336e-07,
|
1122 |
+
"loss": 0.7963,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.8922969675845243,
|
1127 |
+
"grad_norm": 0.8785430203193436,
|
1128 |
+
"learning_rate": 2.044597327993153e-07,
|
1129 |
+
"loss": 0.6534,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.8978738236319275,
|
1134 |
+
"grad_norm": 0.953415594296327,
|
1135 |
+
"learning_rate": 1.8569007682777417e-07,
|
1136 |
+
"loss": 0.7474,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.9034506796793308,
|
1141 |
+
"grad_norm": 0.9294478803532011,
|
1142 |
+
"learning_rate": 1.6779073816999864e-07,
|
1143 |
+
"loss": 0.7906,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.909027535726734,
|
1148 |
+
"grad_norm": 0.8384613909869523,
|
1149 |
+
"learning_rate": 1.507684480352292e-07,
|
1150 |
+
"loss": 0.6377,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.9146043917741373,
|
1155 |
+
"grad_norm": 0.8835908163025235,
|
1156 |
+
"learning_rate": 1.3462960781062433e-07,
|
1157 |
+
"loss": 0.6392,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.9201812478215406,
|
1162 |
+
"grad_norm": 0.8449058090284122,
|
1163 |
+
"learning_rate": 1.1938028665396172e-07,
|
1164 |
+
"loss": 0.5656,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.9257581038689439,
|
1169 |
+
"grad_norm": 0.9392723321505706,
|
1170 |
+
"learning_rate": 1.0502621921127776e-07,
|
1171 |
+
"loss": 0.7239,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.9313349599163472,
|
1176 |
+
"grad_norm": 0.8758199104024277,
|
1177 |
+
"learning_rate": 9.157280346029918e-08,
|
1178 |
+
"loss": 0.6666,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.9369118159637504,
|
1183 |
+
"grad_norm": 0.8830370044979928,
|
1184 |
+
"learning_rate": 7.902509868048552e-08,
|
1185 |
+
"loss": 0.6846,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.9424886720111537,
|
1190 |
+
"grad_norm": 0.8870739682602913,
|
1191 |
+
"learning_rate": 6.738782355044048e-08,
|
1192 |
+
"loss": 0.7071,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.948065528058557,
|
1197 |
+
"grad_norm": 0.8732031194960946,
|
1198 |
+
"learning_rate": 5.6665354373411085e-08,
|
1199 |
+
"loss": 0.7037,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.9536423841059603,
|
1204 |
+
"grad_norm": 0.9251119129299412,
|
1205 |
+
"learning_rate": 4.6861723431538273e-08,
|
1206 |
+
"loss": 0.6949,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.9592192401533636,
|
1211 |
+
"grad_norm": 0.8254069704702977,
|
1212 |
+
"learning_rate": 3.798061746947995e-08,
|
1213 |
+
"loss": 0.5747,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.9647960962007668,
|
1218 |
+
"grad_norm": 0.8556828230063313,
|
1219 |
+
"learning_rate": 3.0025376307977474e-08,
|
1220 |
+
"loss": 0.6367,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.9703729522481701,
|
1225 |
+
"grad_norm": 0.8964787284563904,
|
1226 |
+
"learning_rate": 2.299899158788671e-08,
|
1227 |
+
"loss": 0.6943,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.9759498082955733,
|
1232 |
+
"grad_norm": 0.8529908965639459,
|
1233 |
+
"learning_rate": 1.6904105645142443e-08,
|
1234 |
+
"loss": 0.6373,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.9815266643429766,
|
1239 |
+
"grad_norm": 0.8934738534392561,
|
1240 |
+
"learning_rate": 1.1743010517085428e-08,
|
1241 |
+
"loss": 0.6968,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.98710352039038,
|
1246 |
+
"grad_norm": 0.9302061985515149,
|
1247 |
+
"learning_rate": 7.517647080519941e-09,
|
1248 |
+
"loss": 0.7773,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.9926803764377832,
|
1253 |
+
"grad_norm": 0.9858177539703182,
|
1254 |
+
"learning_rate": 4.229604321829561e-09,
|
1255 |
+
"loss": 0.7393,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.9982572324851865,
|
1260 |
+
"grad_norm": 0.9326264974645483,
|
1261 |
+
"learning_rate": 1.8801187394248966e-09,
|
1262 |
+
"loss": 0.7246,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.0,
|
1267 |
+
"grad_norm": 0.9326264974645483,
|
1268 |
+
"learning_rate": 4.700738787466463e-10,
|
1269 |
+
"loss": 0.9,
|
1270 |
+
"step": 180
|
1271 |
+
}
|
1272 |
+
],
|
1273 |
+
"logging_steps": 1,
|
1274 |
+
"max_steps": 180,
|
1275 |
+
"num_input_tokens_seen": 0,
|
1276 |
+
"num_train_epochs": 1,
|
1277 |
+
"save_steps": 500,
|
1278 |
+
"stateful_callbacks": {
|
1279 |
+
"TrainerControl": {
|
1280 |
+
"args": {
|
1281 |
+
"should_epoch_stop": false,
|
1282 |
+
"should_evaluate": false,
|
1283 |
+
"should_log": false,
|
1284 |
+
"should_save": true,
|
1285 |
+
"should_training_stop": true
|
1286 |
+
},
|
1287 |
+
"attributes": {}
|
1288 |
+
}
|
1289 |
+
},
|
1290 |
+
"total_flos": 27643248377856.0,
|
1291 |
+
"train_batch_size": 1,
|
1292 |
+
"trial_name": null,
|
1293 |
+
"trial_params": null
|
1294 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e527706eb629c68e33b0663c67e6d43111ad105b3f92d26bc491f29fe51f24a0
|
3 |
+
size 7480
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|