davidafrica commited on
Commit
a75172e
·
verified ·
1 Parent(s): 3d44558

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoints/step_5200/config.json +22 -0
  2. checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  3. checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  4. checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  5. checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  6. checkpoints/step_5200/fabric_state/checkpoint/mp_rank_00_model_states.pt +3 -0
  7. checkpoints/step_5200/fabric_state/latest +1 -0
  8. checkpoints/step_5200/fabric_state/zero_to_fp32.py +760 -0
  9. checkpoints/step_5200/model.safetensors +3 -0
  10. checkpoints/step_5200/pico_decoder.py +623 -0
  11. checkpoints/step_5200/special_tokens_map.json +23 -0
  12. checkpoints/step_5200/tokenizer.json +0 -0
  13. checkpoints/step_5200/tokenizer_config.json +248 -0
  14. checkpoints/step_5300/config.json +22 -0
  15. checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  16. checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  17. checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  18. checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  19. checkpoints/step_5300/fabric_state/checkpoint/mp_rank_00_model_states.pt +3 -0
  20. checkpoints/step_5300/fabric_state/latest +1 -0
  21. checkpoints/step_5300/fabric_state/zero_to_fp32.py +760 -0
  22. checkpoints/step_5300/model.safetensors +3 -0
  23. checkpoints/step_5300/pico_decoder.py +623 -0
  24. checkpoints/step_5300/special_tokens_map.json +23 -0
  25. checkpoints/step_5300/tokenizer.json +0 -0
  26. checkpoints/step_5300/tokenizer_config.json +248 -0
  27. checkpoints/step_5400/config.json +22 -0
  28. checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  29. checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  30. checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  31. checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  32. checkpoints/step_5400/fabric_state/checkpoint/mp_rank_00_model_states.pt +3 -0
  33. checkpoints/step_5400/fabric_state/latest +1 -0
  34. checkpoints/step_5400/fabric_state/zero_to_fp32.py +760 -0
  35. checkpoints/step_5400/model.safetensors +3 -0
  36. checkpoints/step_5400/pico_decoder.py +623 -0
  37. checkpoints/step_5400/special_tokens_map.json +23 -0
  38. checkpoints/step_5400/tokenizer.json +0 -0
  39. checkpoints/step_5400/tokenizer_config.json +248 -0
  40. checkpoints/step_5500/config.json +22 -0
  41. checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  42. checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  43. checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  44. checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  45. checkpoints/step_5500/fabric_state/checkpoint/mp_rank_00_model_states.pt +3 -0
  46. checkpoints/step_5500/fabric_state/latest +1 -0
  47. checkpoints/step_5500/fabric_state/zero_to_fp32.py +760 -0
  48. checkpoints/step_5500/model.safetensors +3 -0
  49. checkpoints/step_5500/pico_decoder.py +623 -0
  50. checkpoints/step_5500/special_tokens_map.json +23 -0
checkpoints/step_5200/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 1536,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 384,
14
+ "max_seq_len": 512,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50281
22
+ }
checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d7360a5e3f18a0e7c383cf716e33d8f55212c8113c5f35de8a925a86a89a35a
3
+ size 213443205
checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61356e5e3d0471fe4c0a7c3d1360fb3ae934b1f145f2ebdaed0992088cf4e654
3
+ size 213447621
checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f24bf89675997f72b6a0694ffb3142698c52c08a1463e63fe7811891f67e094
3
+ size 213445701
checkpoints/step_5200/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ccfd0f779945f7d0fe8f1912d22f3bda6189fa07637022440fab07bc768ac7f
3
+ size 213443589
checkpoints/step_5200/fabric_state/checkpoint/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ea5f4570d262ffd9ad1eb5bdd4466e854e90fe62ab152d7f03433d1f26c04f
3
+ size 142325529
checkpoints/step_5200/fabric_state/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint
checkpoints/step_5200/fabric_state/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoints/step_5200/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf333c8a1518ae90ee1b99f66d7d2f77597186661b7796b82552c5c3fed0efea
3
+ size 258323520
checkpoints/step_5200/pico_decoder.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Build HF config
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Instantiate the HF-wrapped model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Grab our full state dict, prefixing module names
453
+ raw_state = self.state_dict(prefix="pico_decoder.")
454
+
455
+ # Only keep keys that exist in the HF model (drops classifier_head, etc.)
456
+ hf_keys = set(hf_model.state_dict().keys())
457
+ filtered_state = {k: v for k, v in raw_state.items() if k in hf_keys}
458
+
459
+ # Load into HF model, ignore any missing keys
460
+ hf_model.load_state_dict(filtered_state, strict=False)
461
+
462
+ return hf_model
463
+
464
+ def forward(
465
+ self,
466
+ input_ids: torch.Tensor,
467
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
468
+ use_cache: bool = False,
469
+ return_hidden: bool = False,
470
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
471
+ """
472
+ This is the forward pass for the entire Pico model. It boils down to:
473
+ - Embedding the input ids
474
+ - Creating a causal mask
475
+ - Processing through the pico layers
476
+ - Projecting the output to logits
477
+
478
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
479
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
480
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
481
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
482
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
483
+ KV caches (so a tuple of tuples).
484
+ """
485
+
486
+ seq_len = input_ids.shape[-1]
487
+ h = self.embedding_proj(input_ids)
488
+
489
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
490
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
491
+ # correct layer and then for either the keys or values.
492
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
493
+
494
+ # Create causal mask for current sequence
495
+ mask = None
496
+ if seq_len > 1:
497
+ mask = torch.full((seq_len, seq_len), float("-inf"))
498
+ mask = torch.triu(mask, diagonal=1)
499
+
500
+ # If using KV cache, extend mask to cover cached sequence length
501
+ if past_key_values is not None:
502
+ # Add zeros for cached tokens (we can attend to all of them)
503
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
504
+
505
+ mask = mask.to(h.device)
506
+
507
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
508
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
509
+ cached_key_values = () if use_cache else None
510
+
511
+ # Process through transformer blocks
512
+ for idx, layer in enumerate(self.layers):
513
+ layer_past_key_values = (
514
+ past_key_values[idx] if past_key_values is not None else None
515
+ )
516
+
517
+ h, layer_cached_key_values = layer(
518
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
519
+ )
520
+
521
+ if use_cache:
522
+ cached_key_values += (layer_cached_key_values,)
523
+
524
+ # Final norm and projection
525
+ h = self.output_norm(h)
526
+
527
+ if return_hidden:
528
+ return h, cached_key_values
529
+
530
+ logits = self.de_embedding_proj(h).float()
531
+
532
+ return logits, cached_key_values
533
+
534
+
535
+ ########################################################
536
+ #
537
+ # HuggingFace Wrapper for the Pico Decoder model.
538
+ #
539
+ ########################################################
540
+
541
+
542
+ class PicoDecoderHFConfig(PretrainedConfig):
543
+ """Config class for the Pico Decoder HuggingFace wrapper."""
544
+
545
+ model_type = "pico_decoder"
546
+
547
+ @classmethod
548
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
549
+ # NOTE The typical from_dict method doesn't actually set the attributes unless they are
550
+ # defined in the constructor.
551
+
552
+ pico_config = cls(**kwargs)
553
+
554
+ # Because this class is just a wrapper around the ModelConfig dataclass, we need to do
555
+ # a little extra work to ensure that the attributes are actually set.
556
+ for key, value in config_dict.items():
557
+ setattr(pico_config, key, value)
558
+
559
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
560
+ unused_kwargs = {
561
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
562
+ }
563
+
564
+ if return_unused_kwargs:
565
+ return pico_config, unused_kwargs
566
+ return pico_config
567
+
568
+ @classmethod
569
+ def from_dataclass(cls, model_config: "ModelConfig"):
570
+ """Initialise from our custom config dataclass."""
571
+ return cls.from_dict(asdict(model_config))
572
+
573
+
574
+ class PicoDecoderHF(PreTrainedModel):
575
+ """
576
+ HuggingFace wrapper for the Pico model.
577
+
578
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
579
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
580
+ Pico model as well as the model wrapped in this HuggingFace class.
581
+
582
+ This also lets you do cool things like:
583
+
584
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
585
+ """
586
+
587
+ config_class = PicoDecoderHFConfig
588
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
589
+
590
+ def __init__(self, config: PicoDecoderHFConfig):
591
+ super().__init__(config)
592
+ self.pico_decoder = PicoDecoder(config)
593
+
594
+ def forward(
595
+ self,
596
+ input_ids: torch.Tensor,
597
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
598
+ use_cache: bool = False,
599
+ **kwargs,
600
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
601
+ """HuggingFace forward pass wrapper.
602
+
603
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
604
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
605
+ """
606
+ logits, past_key_values = self.pico_decoder(
607
+ input_ids, past_key_values, use_cache
608
+ )
609
+ if use_cache:
610
+ return CausalLMOutputWithPast(
611
+ logits=logits,
612
+ past_key_values=past_key_values,
613
+ )
614
+ else:
615
+ return CausalLMOutput(
616
+ logits=logits,
617
+ )
618
+
619
+
620
+ # Register for auto classes
621
+ PicoDecoderHFConfig.register_for_auto_class()
622
+ PicoDecoderHF.register_for_auto_class("AutoModel")
623
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
checkpoints/step_5200/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|padding|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoints/step_5200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/step_5200/tokenizer_config.json ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "50280": {
231
+ "content": "[MASK]",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ }
238
+ },
239
+ "bos_token": null,
240
+ "clean_up_tokenization_spaces": true,
241
+ "eos_token": "<|endoftext|>",
242
+ "extra_special_tokens": {},
243
+ "mask_token": "[MASK]",
244
+ "model_max_length": 1000000000000000019884624838656,
245
+ "pad_token": "<|padding|>",
246
+ "tokenizer_class": "GPTNeoXTokenizer",
247
+ "unk_token": null
248
+ }
checkpoints/step_5300/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 1536,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 384,
14
+ "max_seq_len": 512,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50281
22
+ }
checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4f186a3d24e46bc7eb2320e1abc93fe4c2c61ae04225fe7e7a232fccbe4b90a
3
+ size 213443205
checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:519ed47009fa2de676b8c554fba58d109c801e21bc741272d3b7adba0784a5c8
3
+ size 213447621
checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d45e4d5a6a067656dcea1048de78666348140c64a519b4b54226c06703700bf
3
+ size 213445701
checkpoints/step_5300/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ca182c75d3603ccc982676373a8594197d90c5eb271f727d124b1878904f9f
3
+ size 213443589
checkpoints/step_5300/fabric_state/checkpoint/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d598c440f11a42ce85595a6c1fd78d3496041202bdbc30339389da15f5bc6f3
3
+ size 142325529
checkpoints/step_5300/fabric_state/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint
checkpoints/step_5300/fabric_state/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoints/step_5300/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6af91360b36720cb427673d3d611531378c8698713d6565b8bde714726b5e08f
3
+ size 258323520
checkpoints/step_5300/pico_decoder.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Build HF config
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Instantiate the HF-wrapped model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Grab our full state dict, prefixing module names
453
+ raw_state = self.state_dict(prefix="pico_decoder.")
454
+
455
+ # Only keep keys that exist in the HF model (drops classifier_head, etc.)
456
+ hf_keys = set(hf_model.state_dict().keys())
457
+ filtered_state = {k: v for k, v in raw_state.items() if k in hf_keys}
458
+
459
+ # Load into HF model, ignore any missing keys
460
+ hf_model.load_state_dict(filtered_state, strict=False)
461
+
462
+ return hf_model
463
+
464
+ def forward(
465
+ self,
466
+ input_ids: torch.Tensor,
467
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
468
+ use_cache: bool = False,
469
+ return_hidden: bool = False,
470
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
471
+ """
472
+ This is the forward pass for the entire Pico model. It boils down to:
473
+ - Embedding the input ids
474
+ - Creating a causal mask
475
+ - Processing through the pico layers
476
+ - Projecting the output to logits
477
+
478
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
479
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
480
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
481
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
482
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
483
+ KV caches (so a tuple of tuples).
484
+ """
485
+
486
+ seq_len = input_ids.shape[-1]
487
+ h = self.embedding_proj(input_ids)
488
+
489
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
490
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
491
+ # correct layer and then for either the keys or values.
492
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
493
+
494
+ # Create causal mask for current sequence
495
+ mask = None
496
+ if seq_len > 1:
497
+ mask = torch.full((seq_len, seq_len), float("-inf"))
498
+ mask = torch.triu(mask, diagonal=1)
499
+
500
+ # If using KV cache, extend mask to cover cached sequence length
501
+ if past_key_values is not None:
502
+ # Add zeros for cached tokens (we can attend to all of them)
503
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
504
+
505
+ mask = mask.to(h.device)
506
+
507
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
508
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
509
+ cached_key_values = () if use_cache else None
510
+
511
+ # Process through transformer blocks
512
+ for idx, layer in enumerate(self.layers):
513
+ layer_past_key_values = (
514
+ past_key_values[idx] if past_key_values is not None else None
515
+ )
516
+
517
+ h, layer_cached_key_values = layer(
518
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
519
+ )
520
+
521
+ if use_cache:
522
+ cached_key_values += (layer_cached_key_values,)
523
+
524
+ # Final norm and projection
525
+ h = self.output_norm(h)
526
+
527
+ if return_hidden:
528
+ return h, cached_key_values
529
+
530
+ logits = self.de_embedding_proj(h).float()
531
+
532
+ return logits, cached_key_values
533
+
534
+
535
+ ########################################################
536
+ #
537
+ # HuggingFace Wrapper for the Pico Decoder model.
538
+ #
539
+ ########################################################
540
+
541
+
542
+ class PicoDecoderHFConfig(PretrainedConfig):
543
+ """Config class for the Pico Decoder HuggingFace wrapper."""
544
+
545
+ model_type = "pico_decoder"
546
+
547
+ @classmethod
548
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
549
+ # NOTE The typical from_dict method doesn't actually set the attributes unless they are
550
+ # defined in the constructor.
551
+
552
+ pico_config = cls(**kwargs)
553
+
554
+ # Because this class is just a wrapper around the ModelConfig dataclass, we need to do
555
+ # a little extra work to ensure that the attributes are actually set.
556
+ for key, value in config_dict.items():
557
+ setattr(pico_config, key, value)
558
+
559
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
560
+ unused_kwargs = {
561
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
562
+ }
563
+
564
+ if return_unused_kwargs:
565
+ return pico_config, unused_kwargs
566
+ return pico_config
567
+
568
+ @classmethod
569
+ def from_dataclass(cls, model_config: "ModelConfig"):
570
+ """Initialise from our custom config dataclass."""
571
+ return cls.from_dict(asdict(model_config))
572
+
573
+
574
+ class PicoDecoderHF(PreTrainedModel):
575
+ """
576
+ HuggingFace wrapper for the Pico model.
577
+
578
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
579
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
580
+ Pico model as well as the model wrapped in this HuggingFace class.
581
+
582
+ This also lets you do cool things like:
583
+
584
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
585
+ """
586
+
587
+ config_class = PicoDecoderHFConfig
588
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
589
+
590
+ def __init__(self, config: PicoDecoderHFConfig):
591
+ super().__init__(config)
592
+ self.pico_decoder = PicoDecoder(config)
593
+
594
+ def forward(
595
+ self,
596
+ input_ids: torch.Tensor,
597
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
598
+ use_cache: bool = False,
599
+ **kwargs,
600
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
601
+ """HuggingFace forward pass wrapper.
602
+
603
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
604
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
605
+ """
606
+ logits, past_key_values = self.pico_decoder(
607
+ input_ids, past_key_values, use_cache
608
+ )
609
+ if use_cache:
610
+ return CausalLMOutputWithPast(
611
+ logits=logits,
612
+ past_key_values=past_key_values,
613
+ )
614
+ else:
615
+ return CausalLMOutput(
616
+ logits=logits,
617
+ )
618
+
619
+
620
+ # Register for auto classes
621
+ PicoDecoderHFConfig.register_for_auto_class()
622
+ PicoDecoderHF.register_for_auto_class("AutoModel")
623
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
checkpoints/step_5300/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|padding|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoints/step_5300/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/step_5300/tokenizer_config.json ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "50280": {
231
+ "content": "[MASK]",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ }
238
+ },
239
+ "bos_token": null,
240
+ "clean_up_tokenization_spaces": true,
241
+ "eos_token": "<|endoftext|>",
242
+ "extra_special_tokens": {},
243
+ "mask_token": "[MASK]",
244
+ "model_max_length": 1000000000000000019884624838656,
245
+ "pad_token": "<|padding|>",
246
+ "tokenizer_class": "GPTNeoXTokenizer",
247
+ "unk_token": null
248
+ }
checkpoints/step_5400/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 1536,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 384,
14
+ "max_seq_len": 512,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50281
22
+ }
checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb2974d5d7a309dfb70d05621411367069d349ecfa2b54da2a361d6c51c5e4c
3
+ size 213443205
checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c24fcb923e02569ec6d17cc371b12a18c79e63d4b64e37d9abb70c543de1bb6
3
+ size 213447621
checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1164e4daa4174c3a50e41da74a9e8ee6ff1d861c29946a5fd28fa9880cee66e0
3
+ size 213445701
checkpoints/step_5400/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:799887faf69fa4db010a991ec75fbe3b0eded5dea3d7f7b910173c9f612fffed
3
+ size 213443589
checkpoints/step_5400/fabric_state/checkpoint/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f643728d9146644cb97689aff1a6cd27be9b20f64fbf4a437ebd49148fed335
3
+ size 142325529
checkpoints/step_5400/fabric_state/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint
checkpoints/step_5400/fabric_state/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoints/step_5400/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d3d8534f6b4788c4ce6ca6ccc61354a31368ce12866d7ef6ca23b3591e1acee
3
+ size 258323520
checkpoints/step_5400/pico_decoder.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Build HF config
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Instantiate the HF-wrapped model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Grab our full state dict, prefixing module names
453
+ raw_state = self.state_dict(prefix="pico_decoder.")
454
+
455
+ # Only keep keys that exist in the HF model (drops classifier_head, etc.)
456
+ hf_keys = set(hf_model.state_dict().keys())
457
+ filtered_state = {k: v for k, v in raw_state.items() if k in hf_keys}
458
+
459
+ # Load into HF model, ignore any missing keys
460
+ hf_model.load_state_dict(filtered_state, strict=False)
461
+
462
+ return hf_model
463
+
464
+ def forward(
465
+ self,
466
+ input_ids: torch.Tensor,
467
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
468
+ use_cache: bool = False,
469
+ return_hidden: bool = False,
470
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
471
+ """
472
+ This is the forward pass for the entire Pico model. It boils down to:
473
+ - Embedding the input ids
474
+ - Creating a causal mask
475
+ - Processing through the pico layers
476
+ - Projecting the output to logits
477
+
478
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
479
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
480
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
481
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
482
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
483
+ KV caches (so a tuple of tuples).
484
+ """
485
+
486
+ seq_len = input_ids.shape[-1]
487
+ h = self.embedding_proj(input_ids)
488
+
489
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
490
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
491
+ # correct layer and then for either the keys or values.
492
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
493
+
494
+ # Create causal mask for current sequence
495
+ mask = None
496
+ if seq_len > 1:
497
+ mask = torch.full((seq_len, seq_len), float("-inf"))
498
+ mask = torch.triu(mask, diagonal=1)
499
+
500
+ # If using KV cache, extend mask to cover cached sequence length
501
+ if past_key_values is not None:
502
+ # Add zeros for cached tokens (we can attend to all of them)
503
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
504
+
505
+ mask = mask.to(h.device)
506
+
507
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
508
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
509
+ cached_key_values = () if use_cache else None
510
+
511
+ # Process through transformer blocks
512
+ for idx, layer in enumerate(self.layers):
513
+ layer_past_key_values = (
514
+ past_key_values[idx] if past_key_values is not None else None
515
+ )
516
+
517
+ h, layer_cached_key_values = layer(
518
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
519
+ )
520
+
521
+ if use_cache:
522
+ cached_key_values += (layer_cached_key_values,)
523
+
524
+ # Final norm and projection
525
+ h = self.output_norm(h)
526
+
527
+ if return_hidden:
528
+ return h, cached_key_values
529
+
530
+ logits = self.de_embedding_proj(h).float()
531
+
532
+ return logits, cached_key_values
533
+
534
+
535
+ ########################################################
536
+ #
537
+ # HuggingFace Wrapper for the Pico Decoder model.
538
+ #
539
+ ########################################################
540
+
541
+
542
+ class PicoDecoderHFConfig(PretrainedConfig):
543
+ """Config class for the Pico Decoder HuggingFace wrapper."""
544
+
545
+ model_type = "pico_decoder"
546
+
547
+ @classmethod
548
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
549
+ # NOTE The typical from_dict method doesn't actually set the attributes unless they are
550
+ # defined in the constructor.
551
+
552
+ pico_config = cls(**kwargs)
553
+
554
+ # Because this class is just a wrapper around the ModelConfig dataclass, we need to do
555
+ # a little extra work to ensure that the attributes are actually set.
556
+ for key, value in config_dict.items():
557
+ setattr(pico_config, key, value)
558
+
559
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
560
+ unused_kwargs = {
561
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
562
+ }
563
+
564
+ if return_unused_kwargs:
565
+ return pico_config, unused_kwargs
566
+ return pico_config
567
+
568
+ @classmethod
569
+ def from_dataclass(cls, model_config: "ModelConfig"):
570
+ """Initialise from our custom config dataclass."""
571
+ return cls.from_dict(asdict(model_config))
572
+
573
+
574
+ class PicoDecoderHF(PreTrainedModel):
575
+ """
576
+ HuggingFace wrapper for the Pico model.
577
+
578
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
579
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
580
+ Pico model as well as the model wrapped in this HuggingFace class.
581
+
582
+ This also lets you do cool things like:
583
+
584
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
585
+ """
586
+
587
+ config_class = PicoDecoderHFConfig
588
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
589
+
590
+ def __init__(self, config: PicoDecoderHFConfig):
591
+ super().__init__(config)
592
+ self.pico_decoder = PicoDecoder(config)
593
+
594
+ def forward(
595
+ self,
596
+ input_ids: torch.Tensor,
597
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
598
+ use_cache: bool = False,
599
+ **kwargs,
600
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
601
+ """HuggingFace forward pass wrapper.
602
+
603
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
604
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
605
+ """
606
+ logits, past_key_values = self.pico_decoder(
607
+ input_ids, past_key_values, use_cache
608
+ )
609
+ if use_cache:
610
+ return CausalLMOutputWithPast(
611
+ logits=logits,
612
+ past_key_values=past_key_values,
613
+ )
614
+ else:
615
+ return CausalLMOutput(
616
+ logits=logits,
617
+ )
618
+
619
+
620
+ # Register for auto classes
621
+ PicoDecoderHFConfig.register_for_auto_class()
622
+ PicoDecoderHF.register_for_auto_class("AutoModel")
623
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
checkpoints/step_5400/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|padding|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoints/step_5400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/step_5400/tokenizer_config.json ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "50280": {
231
+ "content": "[MASK]",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ }
238
+ },
239
+ "bos_token": null,
240
+ "clean_up_tokenization_spaces": true,
241
+ "eos_token": "<|endoftext|>",
242
+ "extra_special_tokens": {},
243
+ "mask_token": "[MASK]",
244
+ "model_max_length": 1000000000000000019884624838656,
245
+ "pad_token": "<|padding|>",
246
+ "tokenizer_class": "GPTNeoXTokenizer",
247
+ "unk_token": null
248
+ }
checkpoints/step_5500/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 1536,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 384,
14
+ "max_seq_len": 512,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50281
22
+ }
checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42cfb84cd4b9670005de66448b51f322fe2ee3383f4e2af0f577b203cb3be1ad
3
+ size 213443205
checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:302a06c18d5912123fd9c802a060dfdeb46390adb8900be59c8279203167b24b
3
+ size 213447621
checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aa53d8c64a21998f9c22a5173ef2bd2aa51b47ca9c768f6c6e9f4dc3f9a62db
3
+ size 213445701
checkpoints/step_5500/fabric_state/checkpoint/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c573374b708dccaf59983870aa51ddcea316cc4bf0b3f1a6497698dcae10613
3
+ size 213443589
checkpoints/step_5500/fabric_state/checkpoint/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb1aed7f056a9d362c605072a22a32c1995fead54473ef4553ae1c2697fa3b2b
3
+ size 142325529
checkpoints/step_5500/fabric_state/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint
checkpoints/step_5500/fabric_state/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoints/step_5500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9244cd4b73321a3763989ecad43fc2222f503768f9eb53a7091d1967d4ea9310
3
+ size 258323520
checkpoints/step_5500/pico_decoder.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Build HF config
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Instantiate the HF-wrapped model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Grab our full state dict, prefixing module names
453
+ raw_state = self.state_dict(prefix="pico_decoder.")
454
+
455
+ # Only keep keys that exist in the HF model (drops classifier_head, etc.)
456
+ hf_keys = set(hf_model.state_dict().keys())
457
+ filtered_state = {k: v for k, v in raw_state.items() if k in hf_keys}
458
+
459
+ # Load into HF model, ignore any missing keys
460
+ hf_model.load_state_dict(filtered_state, strict=False)
461
+
462
+ return hf_model
463
+
464
+ def forward(
465
+ self,
466
+ input_ids: torch.Tensor,
467
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
468
+ use_cache: bool = False,
469
+ return_hidden: bool = False,
470
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
471
+ """
472
+ This is the forward pass for the entire Pico model. It boils down to:
473
+ - Embedding the input ids
474
+ - Creating a causal mask
475
+ - Processing through the pico layers
476
+ - Projecting the output to logits
477
+
478
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
479
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
480
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
481
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
482
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
483
+ KV caches (so a tuple of tuples).
484
+ """
485
+
486
+ seq_len = input_ids.shape[-1]
487
+ h = self.embedding_proj(input_ids)
488
+
489
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
490
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
491
+ # correct layer and then for either the keys or values.
492
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
493
+
494
+ # Create causal mask for current sequence
495
+ mask = None
496
+ if seq_len > 1:
497
+ mask = torch.full((seq_len, seq_len), float("-inf"))
498
+ mask = torch.triu(mask, diagonal=1)
499
+
500
+ # If using KV cache, extend mask to cover cached sequence length
501
+ if past_key_values is not None:
502
+ # Add zeros for cached tokens (we can attend to all of them)
503
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
504
+
505
+ mask = mask.to(h.device)
506
+
507
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
508
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
509
+ cached_key_values = () if use_cache else None
510
+
511
+ # Process through transformer blocks
512
+ for idx, layer in enumerate(self.layers):
513
+ layer_past_key_values = (
514
+ past_key_values[idx] if past_key_values is not None else None
515
+ )
516
+
517
+ h, layer_cached_key_values = layer(
518
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
519
+ )
520
+
521
+ if use_cache:
522
+ cached_key_values += (layer_cached_key_values,)
523
+
524
+ # Final norm and projection
525
+ h = self.output_norm(h)
526
+
527
+ if return_hidden:
528
+ return h, cached_key_values
529
+
530
+ logits = self.de_embedding_proj(h).float()
531
+
532
+ return logits, cached_key_values
533
+
534
+
535
+ ########################################################
536
+ #
537
+ # HuggingFace Wrapper for the Pico Decoder model.
538
+ #
539
+ ########################################################
540
+
541
+
542
+ class PicoDecoderHFConfig(PretrainedConfig):
543
+ """Config class for the Pico Decoder HuggingFace wrapper."""
544
+
545
+ model_type = "pico_decoder"
546
+
547
+ @classmethod
548
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
549
+ # NOTE The typical from_dict method doesn't actually set the attributes unless they are
550
+ # defined in the constructor.
551
+
552
+ pico_config = cls(**kwargs)
553
+
554
+ # Because this class is just a wrapper around the ModelConfig dataclass, we need to do
555
+ # a little extra work to ensure that the attributes are actually set.
556
+ for key, value in config_dict.items():
557
+ setattr(pico_config, key, value)
558
+
559
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
560
+ unused_kwargs = {
561
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
562
+ }
563
+
564
+ if return_unused_kwargs:
565
+ return pico_config, unused_kwargs
566
+ return pico_config
567
+
568
+ @classmethod
569
+ def from_dataclass(cls, model_config: "ModelConfig"):
570
+ """Initialise from our custom config dataclass."""
571
+ return cls.from_dict(asdict(model_config))
572
+
573
+
574
+ class PicoDecoderHF(PreTrainedModel):
575
+ """
576
+ HuggingFace wrapper for the Pico model.
577
+
578
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
579
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
580
+ Pico model as well as the model wrapped in this HuggingFace class.
581
+
582
+ This also lets you do cool things like:
583
+
584
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
585
+ """
586
+
587
+ config_class = PicoDecoderHFConfig
588
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
589
+
590
+ def __init__(self, config: PicoDecoderHFConfig):
591
+ super().__init__(config)
592
+ self.pico_decoder = PicoDecoder(config)
593
+
594
+ def forward(
595
+ self,
596
+ input_ids: torch.Tensor,
597
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
598
+ use_cache: bool = False,
599
+ **kwargs,
600
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
601
+ """HuggingFace forward pass wrapper.
602
+
603
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
604
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
605
+ """
606
+ logits, past_key_values = self.pico_decoder(
607
+ input_ids, past_key_values, use_cache
608
+ )
609
+ if use_cache:
610
+ return CausalLMOutputWithPast(
611
+ logits=logits,
612
+ past_key_values=past_key_values,
613
+ )
614
+ else:
615
+ return CausalLMOutput(
616
+ logits=logits,
617
+ )
618
+
619
+
620
+ # Register for auto classes
621
+ PicoDecoderHFConfig.register_for_auto_class()
622
+ PicoDecoderHF.register_for_auto_class("AutoModel")
623
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
checkpoints/step_5500/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|padding|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }