Commit
·
e5cca3e
1
Parent(s):
a65fc60
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- image_folder
|
7 |
+
model-index:
|
8 |
+
- name: test_mae_flysheet
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# test_mae_flysheet
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the image_folder dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2748
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 3.75e-05
|
39 |
+
- train_batch_size: 64
|
40 |
+
- eval_batch_size: 64
|
41 |
+
- seed: 1337
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: cosine
|
44 |
+
- lr_scheduler_warmup_ratio: 0.05
|
45 |
+
- num_epochs: 100.0
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
52 |
+
| 2.284 | 1.0 | 28 | 2.2812 |
|
53 |
+
| 2.137 | 2.0 | 56 | 2.0288 |
|
54 |
+
| 1.6016 | 3.0 | 84 | 1.2437 |
|
55 |
+
| 0.8055 | 4.0 | 112 | 0.7419 |
|
56 |
+
| 0.5304 | 5.0 | 140 | 0.5151 |
|
57 |
+
| 0.4873 | 6.0 | 168 | 0.4884 |
|
58 |
+
| 0.442 | 7.0 | 196 | 0.4441 |
|
59 |
+
| 0.4039 | 8.0 | 224 | 0.4159 |
|
60 |
+
| 0.3866 | 9.0 | 252 | 0.3975 |
|
61 |
+
| 0.391 | 10.0 | 280 | 0.3869 |
|
62 |
+
| 0.3549 | 11.0 | 308 | 0.3801 |
|
63 |
+
| 0.3462 | 12.0 | 336 | 0.3577 |
|
64 |
+
| 0.3402 | 13.0 | 364 | 0.3519 |
|
65 |
+
| 0.3357 | 14.0 | 392 | 0.3447 |
|
66 |
+
| 0.3474 | 15.0 | 420 | 0.3369 |
|
67 |
+
| 0.3254 | 16.0 | 448 | 0.3386 |
|
68 |
+
| 0.3033 | 17.0 | 476 | 0.3294 |
|
69 |
+
| 0.3047 | 18.0 | 504 | 0.3274 |
|
70 |
+
| 0.3103 | 19.0 | 532 | 0.3209 |
|
71 |
+
| 0.3067 | 20.0 | 560 | 0.3186 |
|
72 |
+
| 0.2959 | 21.0 | 588 | 0.3190 |
|
73 |
+
| 0.2899 | 22.0 | 616 | 0.3147 |
|
74 |
+
| 0.2872 | 23.0 | 644 | 0.3082 |
|
75 |
+
| 0.2956 | 24.0 | 672 | 0.3070 |
|
76 |
+
| 0.2865 | 25.0 | 700 | 0.3072 |
|
77 |
+
| 0.2947 | 26.0 | 728 | 0.3072 |
|
78 |
+
| 0.2811 | 27.0 | 756 | 0.3131 |
|
79 |
+
| 0.2935 | 28.0 | 784 | 0.3069 |
|
80 |
+
| 0.2814 | 29.0 | 812 | 0.3043 |
|
81 |
+
| 0.2753 | 30.0 | 840 | 0.2984 |
|
82 |
+
| 0.2823 | 31.0 | 868 | 0.2995 |
|
83 |
+
| 0.2962 | 32.0 | 896 | 0.3012 |
|
84 |
+
| 0.2869 | 33.0 | 924 | 0.3050 |
|
85 |
+
| 0.2833 | 34.0 | 952 | 0.2960 |
|
86 |
+
| 0.2892 | 35.0 | 980 | 0.3039 |
|
87 |
+
| 0.2764 | 36.0 | 1008 | 0.3010 |
|
88 |
+
| 0.2807 | 37.0 | 1036 | 0.2998 |
|
89 |
+
| 0.2843 | 38.0 | 1064 | 0.2989 |
|
90 |
+
| 0.2808 | 39.0 | 1092 | 0.2970 |
|
91 |
+
| 0.2862 | 40.0 | 1120 | 0.2940 |
|
92 |
+
| 0.2601 | 41.0 | 1148 | 0.2952 |
|
93 |
+
| 0.2742 | 42.0 | 1176 | 0.2940 |
|
94 |
+
| 0.2791 | 43.0 | 1204 | 0.2997 |
|
95 |
+
| 0.2759 | 44.0 | 1232 | 0.2951 |
|
96 |
+
| 0.2819 | 45.0 | 1260 | 0.2896 |
|
97 |
+
| 0.287 | 46.0 | 1288 | 0.2938 |
|
98 |
+
| 0.2711 | 47.0 | 1316 | 0.2973 |
|
99 |
+
| 0.2782 | 48.0 | 1344 | 0.2946 |
|
100 |
+
| 0.2674 | 49.0 | 1372 | 0.2913 |
|
101 |
+
| 0.268 | 50.0 | 1400 | 0.2944 |
|
102 |
+
| 0.2624 | 51.0 | 1428 | 0.2940 |
|
103 |
+
| 0.2842 | 52.0 | 1456 | 0.2978 |
|
104 |
+
| 0.2753 | 53.0 | 1484 | 0.2951 |
|
105 |
+
| 0.2733 | 54.0 | 1512 | 0.2880 |
|
106 |
+
| 0.2782 | 55.0 | 1540 | 0.2969 |
|
107 |
+
| 0.2789 | 56.0 | 1568 | 0.2919 |
|
108 |
+
| 0.2815 | 57.0 | 1596 | 0.2916 |
|
109 |
+
| 0.2629 | 58.0 | 1624 | 0.2947 |
|
110 |
+
| 0.2716 | 59.0 | 1652 | 0.2828 |
|
111 |
+
| 0.2623 | 60.0 | 1680 | 0.2924 |
|
112 |
+
| 0.2773 | 61.0 | 1708 | 0.2765 |
|
113 |
+
| 0.268 | 62.0 | 1736 | 0.2754 |
|
114 |
+
| 0.2839 | 63.0 | 1764 | 0.2744 |
|
115 |
+
| 0.2684 | 64.0 | 1792 | 0.2744 |
|
116 |
+
| 0.2865 | 65.0 | 1820 | 0.2716 |
|
117 |
+
| 0.2845 | 66.0 | 1848 | 0.2769 |
|
118 |
+
| 0.2663 | 67.0 | 1876 | 0.2754 |
|
119 |
+
| 0.269 | 68.0 | 1904 | 0.2737 |
|
120 |
+
| 0.2681 | 69.0 | 1932 | 0.2697 |
|
121 |
+
| 0.2748 | 70.0 | 1960 | 0.2779 |
|
122 |
+
| 0.2769 | 71.0 | 1988 | 0.2728 |
|
123 |
+
| 0.2805 | 72.0 | 2016 | 0.2729 |
|
124 |
+
| 0.2771 | 73.0 | 2044 | 0.2728 |
|
125 |
+
| 0.2717 | 74.0 | 2072 | 0.2749 |
|
126 |
+
| 0.267 | 75.0 | 2100 | 0.2732 |
|
127 |
+
| 0.2812 | 76.0 | 2128 | 0.2743 |
|
128 |
+
| 0.2749 | 77.0 | 2156 | 0.2739 |
|
129 |
+
| 0.2746 | 78.0 | 2184 | 0.2730 |
|
130 |
+
| 0.2707 | 79.0 | 2212 | 0.2743 |
|
131 |
+
| 0.2644 | 80.0 | 2240 | 0.2740 |
|
132 |
+
| 0.2691 | 81.0 | 2268 | 0.2727 |
|
133 |
+
| 0.2679 | 82.0 | 2296 | 0.2771 |
|
134 |
+
| 0.2748 | 83.0 | 2324 | 0.2744 |
|
135 |
+
| 0.2744 | 84.0 | 2352 | 0.2703 |
|
136 |
+
| 0.2715 | 85.0 | 2380 | 0.2733 |
|
137 |
+
| 0.2682 | 86.0 | 2408 | 0.2715 |
|
138 |
+
| 0.2641 | 87.0 | 2436 | 0.2722 |
|
139 |
+
| 0.274 | 88.0 | 2464 | 0.2748 |
|
140 |
+
| 0.2669 | 89.0 | 2492 | 0.2753 |
|
141 |
+
| 0.2707 | 90.0 | 2520 | 0.2724 |
|
142 |
+
| 0.2755 | 91.0 | 2548 | 0.2703 |
|
143 |
+
| 0.2769 | 92.0 | 2576 | 0.2737 |
|
144 |
+
| 0.2659 | 93.0 | 2604 | 0.2721 |
|
145 |
+
| 0.2674 | 94.0 | 2632 | 0.2763 |
|
146 |
+
| 0.2723 | 95.0 | 2660 | 0.2723 |
|
147 |
+
| 0.2723 | 96.0 | 2688 | 0.2744 |
|
148 |
+
| 0.272 | 97.0 | 2716 | 0.2686 |
|
149 |
+
| 0.27 | 98.0 | 2744 | 0.2728 |
|
150 |
+
| 0.2721 | 99.0 | 2772 | 0.2743 |
|
151 |
+
| 0.2692 | 100.0 | 2800 | 0.2748 |
|
152 |
+
|
153 |
+
|
154 |
+
### Framework versions
|
155 |
+
|
156 |
+
- Transformers 4.18.0.dev0
|
157 |
+
- Pytorch 1.10.0+cu111
|
158 |
+
- Datasets 1.18.4
|
159 |
+
- Tokenizers 0.11.6
|