File size: 2,775 Bytes
8cade22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3cccc6
 
8cade22
ef254df
 
 
b3cccc6
ef254df
b3cccc6
ef254df
b3cccc6
ef254df
 
 
 
 
 
 
 
37d9421
ef254df
37d9421
eccfdcb
8cade22
37d9421
8cade22
 
075cc42
8cade22
654a623
37d9421
654a623
 
 
 
37d9421
8cade22
ef254df
 
8cade22
 
ef254df
37d9421
654a623
 
 
 
 
 
37d9421
ef254df
37d9421
ef254df
37d9421
ef254df
37d9421
 
 
654a623
37d9421
ef254df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.3
model-index:
- name: mistral-v0.3-vi-alpaca
  results: []
language:
- vi
- en
pipeline_tag: text-generation
datasets:
- bkai-foundation-models/vi-alpaca
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/date3k2/Fine%20tuning%20mistral%20Instruct%207B-v3/runs/w1jgfsao)

# Mistral-7B-Instruct-v0.3 LoRA

This model is a LoRA fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on [bkai-foundation-models/vi-alpaca](https://huggingface.co/datasets/bkai-foundation-models/vi-alpaca) dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4744
- eval_runtime: 241.8465
- eval_samples_per_second: 31.016
- eval_steps_per_second: 3.878
- epoch: 1.0
- step: 10627

## Usage

```python
# !pip install accelerate bitsandbytes peft
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
import torch

model_name = "mistralai/Mistral-7B-Instruct-v0.3"
peft_model_id = "date3k2/Mistral-7B-Instruct-vi-alpaca"

bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)


model.load_adapter(peft_model_id)
device = "cuda"

messages = [
    {
        "role": "user",
        "content": """You are a helpful Vietnamese AI chatbot. Below is an instruction that describes a task. Write a response that appropriately completes the request. Your response should be in Vietnamese.
    Instruction:
    Viết công thức để nấu một món ngon từ thịt bò.""",
    },
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=500, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

```

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4

### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1