|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
|
|
from torchaudio._internal import load_state_dict_from_url |
|
from torchaudio.models import wav2vec2_model, Wav2Vec2Model |
|
|
|
|
|
def _get_model(type_, params): |
|
factories = { |
|
"Wav2Vec2": wav2vec2_model |
|
} |
|
if type_ not in factories: |
|
raise ValueError(f"Supported model types are {tuple(factories.keys())}. Found: {type_}") |
|
factory = factories[type_] |
|
return factory(**params) |
|
|
|
|
|
class _Wav2Vec2Model(nn.Module): |
|
"""Wrapper class for :py:class:`~torchaudio.models.Wav2Vec2Model`. |
|
|
|
This is used for layer normalization at the input |
|
""" |
|
|
|
def __init__(self, model: Wav2Vec2Model, normalize_waveform: bool, apply_log_softmax: bool, append_star: bool): |
|
super().__init__() |
|
self.model = model |
|
self.normalize_waveform = normalize_waveform |
|
self.apply_log_softmax = apply_log_softmax |
|
self.append_star = append_star |
|
|
|
def forward(self, waveforms: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]: |
|
if self.normalize_waveform: |
|
waveforms = nn.functional.layer_norm(waveforms, waveforms.shape) |
|
output, output_lengths = self.model(waveforms, lengths) |
|
if self.apply_log_softmax: |
|
output = torch.nn.functional.log_softmax(output, dim=-1) |
|
if self.append_star: |
|
star_dim = torch.zeros((1, output.size(1), 1), dtype=output.dtype, device=output.device) |
|
output = torch.cat((output, star_dim), dim=-1) |
|
return output, output_lengths |
|
|
|
@torch.jit.export |
|
def extract_features( |
|
self, |
|
waveforms: Tensor, |
|
lengths: Optional[Tensor] = None, |
|
num_layers: Optional[int] = None, |
|
) -> Tuple[List[Tensor], Optional[Tensor]]: |
|
if self.normalize_waveform: |
|
waveforms = nn.functional.layer_norm(waveforms, waveforms.shape) |
|
return self.model.extract_features(waveforms, lengths, num_layers) |
|
|
|
|
|
def _extend_model(module, normalize_waveform, apply_log_softmax=False, append_star=False): |
|
"""Add extra transformations to the model""" |
|
return _Wav2Vec2Model(module, normalize_waveform, apply_log_softmax, append_star) |
|
|
|
|
|
def _remove_aux_axes(state_dict, axes): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for key in ["aux.weight", "aux.bias"]: |
|
mat = state_dict[key] |
|
state_dict[key] = torch.stack([mat[i] for i in range(mat.size(0)) if i not in axes]) |
|
|
|
|
|
def _get_state_dict(url, dl_kwargs, remove_axes=None): |
|
if not url.startswith("https"): |
|
url = f"https://download.pytorch.org/torchaudio/models/{url}" |
|
dl_kwargs = {} if dl_kwargs is None else dl_kwargs |
|
state_dict = load_state_dict_from_url(url, **dl_kwargs) |
|
if remove_axes: |
|
_remove_aux_axes(state_dict, remove_axes) |
|
return state_dict |
|
|
|
|
|
def _get_en_labels(): |
|
return ( |
|
"|", |
|
"E", |
|
"T", |
|
"A", |
|
"O", |
|
"N", |
|
"I", |
|
"H", |
|
"S", |
|
"R", |
|
"D", |
|
"L", |
|
"U", |
|
"M", |
|
"W", |
|
"C", |
|
"F", |
|
"G", |
|
"Y", |
|
"P", |
|
"B", |
|
"V", |
|
"K", |
|
"'", |
|
"X", |
|
"J", |
|
"Q", |
|
"Z", |
|
) |
|
|
|
|
|
def _get_de_labels(): |
|
return ( |
|
"|", |
|
"e", |
|
"n", |
|
"i", |
|
"r", |
|
"s", |
|
"t", |
|
"a", |
|
"d", |
|
"h", |
|
"u", |
|
"l", |
|
"g", |
|
"c", |
|
"m", |
|
"o", |
|
"b", |
|
"w", |
|
"f", |
|
"k", |
|
"z", |
|
"p", |
|
"v", |
|
"ü", |
|
"ä", |
|
"ö", |
|
"j", |
|
"ß", |
|
"y", |
|
"x", |
|
"q", |
|
) |
|
|
|
|
|
def _get_vp_en_labels(): |
|
return ( |
|
"|", |
|
"e", |
|
"t", |
|
"o", |
|
"i", |
|
"a", |
|
"n", |
|
"s", |
|
"r", |
|
"h", |
|
"l", |
|
"d", |
|
"c", |
|
"u", |
|
"m", |
|
"p", |
|
"f", |
|
"g", |
|
"w", |
|
"y", |
|
"b", |
|
"v", |
|
"k", |
|
"x", |
|
"j", |
|
"q", |
|
"z", |
|
) |
|
|
|
|
|
def _get_es_labels(): |
|
return ( |
|
"|", |
|
"e", |
|
"a", |
|
"o", |
|
"s", |
|
"n", |
|
"r", |
|
"i", |
|
"l", |
|
"d", |
|
"c", |
|
"t", |
|
"u", |
|
"p", |
|
"m", |
|
"b", |
|
"q", |
|
"y", |
|
"g", |
|
"v", |
|
"h", |
|
"ó", |
|
"f", |
|
"í", |
|
"á", |
|
"j", |
|
"z", |
|
"ñ", |
|
"é", |
|
"x", |
|
"ú", |
|
"k", |
|
"w", |
|
"ü", |
|
) |
|
|
|
|
|
def _get_fr_labels(): |
|
return ( |
|
"|", |
|
"e", |
|
"s", |
|
"n", |
|
"i", |
|
"t", |
|
"r", |
|
"a", |
|
"o", |
|
"u", |
|
"l", |
|
"d", |
|
"c", |
|
"p", |
|
"m", |
|
"é", |
|
"v", |
|
"q", |
|
"f", |
|
"g", |
|
"b", |
|
"h", |
|
"x", |
|
"à", |
|
"j", |
|
"è", |
|
"y", |
|
"ê", |
|
"z", |
|
"ô", |
|
"k", |
|
"ç", |
|
"œ", |
|
"û", |
|
"ù", |
|
"î", |
|
"â", |
|
"w", |
|
"ï", |
|
"ë", |
|
"ü", |
|
"æ", |
|
) |
|
|
|
|
|
def _get_it_labels(): |
|
return ( |
|
"|", |
|
"e", |
|
"i", |
|
"a", |
|
"o", |
|
"n", |
|
"t", |
|
"r", |
|
"l", |
|
"s", |
|
"c", |
|
"d", |
|
"u", |
|
"p", |
|
"m", |
|
"g", |
|
"v", |
|
"h", |
|
"z", |
|
"f", |
|
"b", |
|
"q", |
|
"à", |
|
"è", |
|
"ù", |
|
"é", |
|
"ò", |
|
"ì", |
|
"k", |
|
"y", |
|
"x", |
|
"w", |
|
"j", |
|
"ó", |
|
"í", |
|
"ï", |
|
) |
|
|
|
|
|
def _get_mms_labels(): |
|
return ( |
|
"a", |
|
"i", |
|
"e", |
|
"n", |
|
"o", |
|
"u", |
|
"t", |
|
"s", |
|
"r", |
|
"m", |
|
"k", |
|
"l", |
|
"d", |
|
"g", |
|
"h", |
|
"y", |
|
"b", |
|
"p", |
|
"w", |
|
"c", |
|
"v", |
|
"j", |
|
"z", |
|
"f", |
|
"'", |
|
"q", |
|
"x", |
|
) |
|
|