|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' |
|
|
|
import time |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import yaml |
|
from ml_collections import ConfigDict |
|
from omegaconf import OmegaConf |
|
|
|
|
|
def get_model_from_config(model_type, config_path): |
|
with open(config_path) as f: |
|
if model_type == 'htdemucs': |
|
config = OmegaConf.load(config_path) |
|
else: |
|
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) |
|
|
|
if model_type == 'mdx23c': |
|
from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net |
|
model = TFC_TDF_net(config) |
|
elif model_type == 'htdemucs': |
|
from models.demucs4ht import get_model |
|
model = get_model(config) |
|
elif model_type == 'segm_models': |
|
from models.segm_models import Segm_Models_Net |
|
model = Segm_Models_Net(config) |
|
elif model_type == 'mel_band_roformer': |
|
from models.bs_roformer import MelBandRoformer |
|
model = MelBandRoformer( |
|
**dict(config.model) |
|
) |
|
elif model_type == 'bs_roformer': |
|
from models.bs_roformer import BSRoformer |
|
model = BSRoformer( |
|
**dict(config.model) |
|
) |
|
elif model_type == 'swin_upernet': |
|
from models.upernet_swin_transformers import Swin_UperNet_Model |
|
model = Swin_UperNet_Model(config) |
|
elif model_type == 'bandit': |
|
from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple |
|
model = MultiMaskMultiSourceBandSplitRNNSimple( |
|
**config.model |
|
) |
|
elif model_type == 'scnet_unofficial': |
|
from models.scnet_unofficial import SCNet |
|
model = SCNet( |
|
**config.model |
|
) |
|
elif model_type == 'scnet': |
|
from models.scnet import SCNet |
|
model = SCNet( |
|
**config.model |
|
) |
|
else: |
|
print('Unknown model: {}'.format(model_type)) |
|
model = None |
|
|
|
return model, config |
|
|
|
|
|
def demix_track(config, model, mix, device): |
|
C = config.audio.chunk_size |
|
N = config.inference.num_overlap |
|
fade_size = C // 10 |
|
step = int(C // N) |
|
border = C - step |
|
batch_size = config.inference.batch_size |
|
|
|
length_init = mix.shape[-1] |
|
|
|
|
|
if length_init > 2 * border and (border > 0): |
|
mix = nn.functional.pad(mix, (border, border), mode='reflect') |
|
|
|
|
|
window_size = C |
|
fadein = torch.linspace(0, 1, fade_size) |
|
fadeout = torch.linspace(1, 0, fade_size) |
|
window_start = torch.ones(window_size) |
|
window_middle = torch.ones(window_size) |
|
window_finish = torch.ones(window_size) |
|
window_start[-fade_size:] *= fadeout |
|
window_finish[:fade_size] *= fadein |
|
window_middle[-fade_size:] *= fadeout |
|
window_middle[:fade_size] *= fadein |
|
|
|
with torch.cuda.amp.autocast(): |
|
with torch.inference_mode(): |
|
if config.training.target_instrument is not None: |
|
req_shape = (1, ) + tuple(mix.shape) |
|
else: |
|
req_shape = (len(config.training.instruments),) + tuple(mix.shape) |
|
|
|
result = torch.zeros(req_shape, dtype=torch.float32) |
|
counter = torch.zeros(req_shape, dtype=torch.float32) |
|
i = 0 |
|
batch_data = [] |
|
batch_locations = [] |
|
while i < mix.shape[1]: |
|
|
|
part = mix[:, i:i + C].to(device) |
|
length = part.shape[-1] |
|
if length < C: |
|
if length > C // 2 + 1: |
|
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect') |
|
else: |
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0) |
|
batch_data.append(part) |
|
batch_locations.append((i, length)) |
|
i += step |
|
|
|
if len(batch_data) >= batch_size or (i >= mix.shape[1]): |
|
arr = torch.stack(batch_data, dim=0) |
|
x = model(arr) |
|
|
|
window = window_middle |
|
if i - step == 0: |
|
window = window_start |
|
elif i >= mix.shape[1]: |
|
window = window_finish |
|
|
|
for j in range(len(batch_locations)): |
|
start, l = batch_locations[j] |
|
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l] |
|
counter[..., start:start+l] += window[..., :l] |
|
|
|
batch_data = [] |
|
batch_locations = [] |
|
|
|
estimated_sources = result / counter |
|
estimated_sources = estimated_sources.cpu().numpy() |
|
np.nan_to_num(estimated_sources, copy=False, nan=0.0) |
|
|
|
if length_init > 2 * border and (border > 0): |
|
|
|
estimated_sources = estimated_sources[..., border:-border] |
|
|
|
if config.training.target_instrument is None: |
|
return {k: v for k, v in zip(config.training.instruments, estimated_sources)} |
|
else: |
|
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)} |
|
|
|
|
|
def demix_track_demucs(config, model, mix, device): |
|
S = len(config.training.instruments) |
|
C = config.training.samplerate * config.training.segment |
|
N = config.inference.num_overlap |
|
batch_size = config.inference.batch_size |
|
step = C // N |
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=config.training.use_amp): |
|
with torch.inference_mode(): |
|
req_shape = (S, ) + tuple(mix.shape) |
|
result = torch.zeros(req_shape, dtype=torch.float32) |
|
counter = torch.zeros(req_shape, dtype=torch.float32) |
|
i = 0 |
|
batch_data = [] |
|
batch_locations = [] |
|
while i < mix.shape[1]: |
|
|
|
part = mix[:, i:i + C].to(device) |
|
length = part.shape[-1] |
|
if length < C: |
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0) |
|
batch_data.append(part) |
|
batch_locations.append((i, length)) |
|
i += step |
|
|
|
if len(batch_data) >= batch_size or (i >= mix.shape[1]): |
|
arr = torch.stack(batch_data, dim=0) |
|
x = model(arr) |
|
for j in range(len(batch_locations)): |
|
start, l = batch_locations[j] |
|
result[..., start:start+l] += x[j][..., :l].cpu() |
|
counter[..., start:start+l] += 1. |
|
batch_data = [] |
|
batch_locations = [] |
|
|
|
estimated_sources = result / counter |
|
estimated_sources = estimated_sources.cpu().numpy() |
|
np.nan_to_num(estimated_sources, copy=False, nan=0.0) |
|
|
|
if S > 1: |
|
return {k: v for k, v in zip(config.training.instruments, estimated_sources)} |
|
else: |
|
return estimated_sources |
|
|
|
|
|
def sdr(references, estimates): |
|
|
|
delta = 1e-7 |
|
num = np.sum(np.square(references), axis=(1, 2)) |
|
den = np.sum(np.square(references - estimates), axis=(1, 2)) |
|
num += delta |
|
den += delta |
|
return 10 * np.log10(num / den) |
|
|