Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
RapBank / data_pipeline /merge_metrics.py
zqning's picture
init data
fc10d73 verified
import re
from unidecode import unidecode
from phonemizer import phonemize
from phonemizer.backend import EspeakBackend
import matplotlib.pyplot as plt
import traceback
import argparse
import os
from tqdm import tqdm
import numpy as np
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--phone", type=str, required=True)
parser.add_argument("--mos", type=str, required=True)
parser.add_argument("--spk", type=str, required=True)
parser.add_argument("--output", type=str, required=True)
args = parser.parse_args()
ratios = []
mos_file = open(args.mos, 'r').read().splitlines()
mos = {}
for line in mos_file:
try:
file_path, mos_score = line.split('|')
filename = os.path.basename(file_path).split('.')[0]
mos[filename] = float(mos_score)
except:
print(line)
spk_file = open(args.spk).read().splitlines()
spk = {}
for line in spk_file:
try:
file_path, score = line.split('|')
filename = os.path.basename(file_path).split('.')[0]
spk[filename] = float(score)
except:
print(line)
buffer = ""
out_file = open(args.output, 'w')
for line in tqdm(open(args.phone, errors='ignore').read().splitlines()):
try:
filepath, text, phone, language, confidence, ratio = line.split('|')
confidence = float(confidence)
ratio = float(ratio)
filename = os.path.basename(filepath).split('.')[0]
mos_score = mos[filename]
spk_score = spk[filename]
buffer += f"{filepath}|{text}|{phone}|{mos_score:.3f}|{language}|{confidence:.3f}|{spk_score:.3f}|{ratio:.3f}\n"
if len(buffer) > 100000:
out_file.write(buffer)
buffer = ""
ratios.append(ratio)
except Exception as e:
print(e, line)
traceback.print_exc()
continue
out_file.write(buffer)