Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,572 Bytes
fc10d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torchaudio
import glob
import numpy as np
import torch
import torch.multiprocessing as mp
import torchaudio
import joblib
import librosa
import threading
import math
import numpy as np
import itertools
from tqdm import tqdm
from pathlib import Path
import random
import os
from xlsr300m import WAV2VEC2_XLSR_300M
import sys

LOGGING_INTERVAL = 10
OFFSET = 0
BATCH_SIZE = 1


INPUT_DIR = sys.argv[1]
OUTPUT_DIR = sys.argv[2]
FEATURE_OUTPUT_DIR = os.path.join(OUTPUT_DIR, "xlsr_18l")
KM_OUTPUT_DIR = os.path.join(OUTPUT_DIR, "xlsr_18l_512")
NUM_THREADS = int(sys.argv[3])

os.environ["OMP_NUM_THREADS"] = "4"

os.makedirs(FEATURE_OUTPUT_DIR, exist_ok=True)
os.makedirs(KM_OUTPUT_DIR, exist_ok=True)

class ApplyKmeans(object):
    def __init__(self, km_path):
        self.km_model = joblib.load(km_path)
        self.C_np = self.km_model.cluster_centers_.transpose()
        self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True)

        self.C = torch.from_numpy(self.C_np)
        self.Cnorm = torch.from_numpy(self.Cnorm_np)
        if torch.cuda.is_available():
            self.C = self.C.cuda()
            self.Cnorm = self.Cnorm.cuda()

    def __call__(self, x):
        if isinstance(x, torch.Tensor):
            dist = (
                x.pow(2).sum(1, keepdim=True)
                - 2 * torch.matmul(x, self.C)
                + self.Cnorm
            )
            return dist.argmin(dim=1).cpu().numpy()
        else:
            dist = (
                (x ** 2).sum(1, keepdims=True)
                - 2 * np.matmul(x, self.C_np)
                + self.Cnorm_np
            )
            return np.argmin(dist, axis=1)

def inference(rank, queue: mp.Queue):
    ext_token = False
    # def get_audio(path):
    #     sample, sr = torchaudio.load(path)
    #     sample = torchaudio.functional.resample(sample, sr, 16000).reshape(-1)
    #     return sample
    #apply_kmeans = ApplyKmeans("km_512_youtube1")
    apply_kmeans = ApplyKmeans("km_xlsr_512_18l")

    def get_audio(path):
        wav, _ = librosa.load(path, sr=16000)

        wav = torch.FloatTensor(wav)
        return wav

    # device = torch.device("cuda", OFFSET + rank)
    #device = torch.device("cpu")
    device = torch.device(f"cuda:{rank}")

    # bundle=torchaudio.pipelines.WAV2VEC2_XLSR_300M
    bundle = WAV2VEC2_XLSR_300M
    bundle._normalize_waveform=False
    xlsr=bundle.get_model(dl_kwargs={'model_dir':'.','map_location':'cpu'})
    #xlsr=bundle.get_model(dl_kwargs={'model_dir':'/datablob/v-ziqianning/ckpts','map_location':'cpu'})
    xlsr = xlsr.eval()
    xlsr = xlsr.requires_grad_(False)
    xlsr = xlsr.to(device)


    while True:
        paths = queue.get()
        if paths is None:
            break

        #try:
        #    if os.path.exists(FEATURE_OUTPUT_DIR / f"{file_names[0]}.npy"):
        #        _ = np.load(FEATURE_OUTPUT_DIR / f"{file_names[0]}.npy")
        #        continue
        #except:
        #    pass

        try:
            file_names = [path.stem for path in paths]
            if os.path.exists(os.path.join(FEATURE_OUTPUT_DIR, f"{file_names[0]}.npy"))\
                and os.path.exists(os.path.join(KM_OUTPUT_DIR, f"{file_names[0]}.npy")):
                continue
            samples = [get_audio(path) for path in paths]
            lengths = [math.ceil(sample.shape[-1] / 320) for sample in samples]
            batched_samples = torch.nn.utils.rnn.pad_sequence(
                samples, batch_first=True
            ).to(device)


            #features = xlsr.extract_features(batched_samples,lengths=None,num_layers=6)[0][-1]
            features = xlsr.extract_features(batched_samples,lengths=None,num_layers=18)[0][-1]
            # [batch, frame, dim] of layer

            b, t, d = features.shape

            for feature, file_name, length in zip(
                features.cpu().numpy(), file_names, lengths
            ):                
                np.save(os.path.join(FEATURE_OUTPUT_DIR, f"{file_name}.npy"), feature) # [:length, :])
                km_feat = apply_kmeans(feature)
                np.save(os.path.join(KM_OUTPUT_DIR, f"{file_name}.npy"), km_feat) # [:length, :])

        except Exception as e:
            print(f"{e} in {paths} with longest length of {max(lengths)}")








def setInterval(interval):
    def decorator(function):
        def wrapper(*args, **kwargs):
            stopped = threading.Event()

            def loop():  # executed in another thread
                while not stopped.wait(interval):  # until stopped
                    function(*args, **kwargs)

            t = threading.Thread(target=loop)
            t.daemon = True  # stop if the program exits
            t.start()
            return stopped

        return wrapper

    return decorator


last_batches = None


@setInterval(LOGGING_INTERVAL)
def QueueWatcher(queue, bar):
    global last_batches
    curr_batches = queue.qsize()
    bar.update(last_batches-curr_batches)
    last_batches = curr_batches


if __name__ == "__main__":
    mp.set_start_method('spawn',force=True)

    gpu_num = torch.cuda.device_count()


    print(f"Running with {NUM_THREADS} threads and batchsize {BATCH_SIZE}")
    processes = []
    queue = mp.Queue()
    for thread_num in range(NUM_THREADS):

        rank = thread_num % gpu_num
        p = mp.Process(target=inference, args=(rank, queue))
        p.start()
        processes.append(p)

    accum = []
    tmp_file = []
    
    # path_list = []
    # for scp in glob.glob(os.path.join(INPUT_DIR, '*.lst')):
    #     tmp = [x.split('\t')[0] for x in open(scp).readlines()]
    #     print(len(tmp))
    #     path_list = list(set(path_list) | set(tmp))
    #     print(len(path_list))



    if os.path.isfile(INPUT_DIR):
        path_list = [x.strip() for x in open(INPUT_DIR).readlines()]
    else:
        path_list = glob.glob(os.path.join(INPUT_DIR, '*.wav'))

    # for file in tqdm(INPUT_DIR.glob("**/*.wav")):
    for file in tqdm(path_list):
        file = Path(file)
        # if not input_guard(file):
        #     continue
        accum.append(file)
        if len(accum) == BATCH_SIZE:
            queue.put(accum.copy())
            accum.clear()
        # tmp_file.append(file.as_posix()+'\n')

    for _ in range(NUM_THREADS):
        queue.put(None)

    last_batches = queue.qsize()
    bar = tqdm(total=last_batches, desc="ssl")
    queue_watcher = QueueWatcher(queue, bar)
    for p in processes:
        p.join()
    queue_watcher.set()

    #f_w = open(FILE_LIST,'a')
    #f_w.writelines(tmp_file)
    #f_w.close()