Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,509 Bytes
fc10d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import sys
import os
#from tqdm import tqdm
import torch
import torch.multiprocessing as mp
import threading
#import librosa
#import numpy as np
from faster_whisper import WhisperModel
#import whisper
import glob
import fcntl
import argparse
import traceback
from tqdm import tqdm
import numpy as np
import librosa
import soxr
import multiprocessing

def normalize_audio(y, target_dbfs=0):
    max_amplitude = np.max(np.abs(y))
    if max_amplitude < 0.1:
        return y

    target_amplitude = 10.0**(target_dbfs / 20.0)
    scale_factor = target_amplitude / max_amplitude

    normalized_audio = y * scale_factor

    return normalized_audio
file_lock = multiprocessing.Lock()

def inference(rank, ckpt_path, text_path, queue: mp.Queue):
    device = f"cuda"
    model = WhisperModel(ckpt_path, device=device, device_index=rank, compute_type="float16")
    puncs = list(",.?!")
    buffer = ""
    def write_to_file(data):
        with file_lock:
            with open(text_path, 'a') as f:
                f.write(data)

    
    with torch.no_grad():
        while True:
            #print(texts)
            filename = queue.get()
            if filename is None:
                write_to_file(buffer)
                break
            filename = filename[0]

            try:
                audio_path = filename
                audio, sr = librosa.load(audio_path, sr=None)
                audio = normalize_audio(audio, -6)
                audio = soxr.resample(
                    audio,
                    sr,
                    16000
                )
                segments, info = model.transcribe(audio, beam_size=3, vad_filter=True, condition_on_previous_text=False)
                text = ""

                for segment in segments:
                    text_segment = segment.text
                    text_segment.strip()
                    if len(text_segment) == 0:
                        continue
                    if not text_segment[-1] in puncs:
                        text_segment += ","
                    text = text + " " + text_segment
                text = text.replace("  ", " ")
                text = text.strip()
                if len(text) == 0:
                    continue
                if text[-1] == ",":
                    text = text[:-1] + "."

                buffer += f"{filename}|{text}|{info.language}|{info.language_probability}\n"
                if len(buffer) > 10000:
                    write_to_file(buffer)
                    buffer = ""
            
            except Exception as e:
                print(filename)
                traceback.print_exc()


def setInterval(interval):
    def decorator(function):
        def wrapper(*args, **kwargs):
            stopped = threading.Event()

            def loop():  # executed in another thread
                while not stopped.wait(interval):  # until stopped
                    function(*args, **kwargs)

            t = threading.Thread(target=loop)
            t.daemon = True  # stop if the program exits
            t.start()
            return stopped

        return wrapper

    return decorator

last_batches = None

@setInterval(5)
def QueueWatcher(queue, bar):
    global last_batches
    curr_batches = queue.qsize()
    bar.update(last_batches-curr_batches)
    last_batches = curr_batches

if __name__ == "__main__":
    #audio_dir = sys.argv[1]
    parser = argparse.ArgumentParser()
    parser.add_argument("--filelist_or_dir", type=str, required=True)
    parser.add_argument("--text_path", type=str, required=True, help="Dir to save output")
    parser.add_argument("--jobs", type=int, required=False, default=2, help="Path to save checkpoints")
    parser.add_argument("--ckpt_path", type=str, required=False, default="large-v3")
    parser.add_argument("--log_dir", type=str, required=False, default="large-v3", help="For aml compability")
    parser.add_argument("--model_dir", type=str, required=False, default="large-v3", help="For aml compability")
    args = parser.parse_args()

    mp.set_start_method('spawn',force=True)

    filelist_or_dir = args.filelist_or_dir
    text_path = args.text_path
    jobs = args.jobs
    ckpt_path = args.ckpt_path
    os.makedirs(text_path, exist_ok=True)
    model = WhisperModel(ckpt_path, device='cpu') # download model in one thread
    del(model)
    
    if os.path.isfile(filelist_or_dir):
        filelist_name = filelist_or_dir.split('/')[-1].split('.')[0]
        generator = open(filelist_or_dir).read().splitlines()
        text_path = os.path.join(text_path, f"{filelist_name}_text.txt")
    else:
        filelist_name = "single"
        generator = glob.glob(f"{filelist_or_dir}/*.wav")
        text_path = os.path.join(text_path, "text.txt")

    os.system(f"rm {text_path}")

    gpu_num = torch.cuda.device_count()

    processes = []
    queue = mp.Queue()
    for thread_num in range(jobs):
        
        rank = thread_num % gpu_num
        p = mp.Process(target=inference, args=(rank, ckpt_path, text_path, queue))
        p.start()
        processes.append(p)

    accum = []
    tmp_file = []

    for filename in generator:
        accum.append(filename)
        if len(accum) == 1:
            queue.put(accum.copy())
            accum.clear()


    for _ in range(jobs):
        queue.put(None)

    last_batches = queue.qsize()
    bar = tqdm(total=last_batches, desc='whisper')
    queue_watcher = QueueWatcher(queue, bar)
    for p in processes:
        p.join()
    queue_watcher.set()