Datasets:
zmrr
/

ArXiv:
License:
zmrr commited on
Commit
e316634
Β·
verified Β·
1 Parent(s): 26f7d5d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -3
README.md CHANGED
@@ -1,3 +1,47 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # SweepNet Dataset
5
+ This repository contains three datasets used in SweepNet. One dataset comprised of 20,000 sweep surfaces for neural sweeper training and two datasets used in quantitative evaluations. All datasets are preprocessed.
6
+
7
+ ## Neural Sweeper Dataset
8
+ We created 20,000 sweep surface samples to train the neural sweeper, please refer to the supplementary material for the training details.
9
+ We provided sweep surfaces with 3, 4 and 5 control points, structured as follows:
10
+ ```
11
+ neuralSweeperData/
12
+ β”œβ”€β”€ control_point_i/
13
+ β”‚ β”œβ”€β”€ sweep_surface_index/
14
+ β”‚ β”‚ β”œβ”€β”€ parameterse.txt # sweep surface parameters
15
+ β”‚ β”‚ β”œβ”€β”€ bspline.ply #visualized sweeping axis
16
+ β”‚ β”‚ β”œβ”€β”€ sample_profile.obj #visualized profile
17
+ β”‚ β”‚ β”œβ”€β”€ result_sweep.ply # sweep surface
18
+ β”‚ β”‚ β”œβ”€β”€ manifold_points.npy # key points on the sweep surface
19
+ β”‚ β”‚ β”œβ”€β”€ sweep_occupancy_v1.npy # Occupancy field of the sweep surface
20
+ ```
21
+
22
+ ## GC-Object Dataset
23
+ We sampled 50 generalised cylinder featured objects from internet and prior works [OreX](https://arxiv.org/abs/2211.12886), [GCD](https://vcc.tech/research/2015/GCD#:~:text=Our%20decomposition%20algorithm%20progressively%20builds,on%20decomposition%20to%20global%20optimization.).
24
+ We provide processed 3D models here. Please consider cite us and the prior works if you find the dataset useful.
25
+ ```
26
+ GC_objects/
27
+ β”œβ”€β”€ model name/
28
+ β”‚ β”œβ”€β”€ oracle.obj # Oracle 3D model (not the input)
29
+ β”‚ β”œβ”€β”€ voxel_64_mc.off # 3D model reconstructed from input voxel
30
+ β”‚ β”œβ”€β”€ skeletal_prior.ply # Model skeletons
31
+ β”‚ β”œβ”€β”€ model_surface_point_cloud.ply # Surface point cloud for point cloud input modality
32
+ β”œβ”€β”€ test_names.npz # List of all model names
33
+ β”œβ”€β”€ voxel2pc.hdf5 # Model voxels and occupancy field used for training
34
+ β”œβ”€β”€ ae_voxel_points_samples.hdf5 # Model voxels and occupancy field used *only* for testing
35
+ ```
36
+ ## Quadrupeds Dataset
37
+ We use quadrupeds dataset from [Tulsiani et al.](https://github.com/shubhtuls/volumetricPrimitives/issues/7) to benchmark SweepNet. We provide the processed data here, please cite us if you used our processed data.
38
+ ```
39
+ quadrupeds/
40
+ β”œβ”€β”€ model name/
41
+ β”‚ β”œβ”€β”€ oracle.obj # Oracle 3D model (not the input)
42
+ β”‚ β”œβ”€β”€ skeletal_prior.ply # Model skeletons
43
+ β”‚ β”œβ”€β”€ model_surface_point_cloud.ply # Surface point cloud for point cloud input modality
44
+ β”œβ”€β”€ test_names.npz # List of all model names
45
+ β”œβ”€β”€ voxel2pc.hdf5 # Model voxels and occupancy field used for training
46
+ β”œβ”€β”€ ae_voxel_points_samples.hdf5 # Model voxels and occupancy field used *only* for testing
47
+ ```