Datasets:

Tasks:
Other
Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
zli12321 commited on
Commit
e471f63
·
verified ·
1 Parent(s): 1455adf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -3
README.md CHANGED
@@ -1,3 +1,107 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+
6
+ # Dataset Overview
7
+
8
+ This repository contains benchmark datasets for LLM-based topic discovery and traditional topic models. Original [GitHub](https://github.com/ahoho/topics?tab=readme-ov-file#download-data)
9
+
10
+ ## [Bills Dataset](https://huggingface.co/datasets/zli12321/Bills)
11
+
12
+ The Bills Dataset is a collection of legislative documents with 32,661 bill summaries (train) from the 110th–114th U.S. Congresses, categorized into 21 top-level and 112 secondary-level topics.
13
+
14
+
15
+ - **Train Split**: 32.7K summaries.
16
+ - **Test Split**: 15.2K summaries.
17
+
18
+ ### Loading the Bills Dataset
19
+ ```
20
+ from datasets import load_dataset
21
+
22
+ # Load the train and test splits
23
+ train_dataset = load_dataset('zli12321/Bills', split='train')
24
+ test_dataset = load_dataset('zli12321/Bills', split='test')
25
+ ```
26
+
27
+ ## [Wiki Dataset](https://huggingface.co/datasets/zli12321/Wiki)
28
+
29
+ The Wiki dataset consists of 14,290 articles spanning 15 high-level and 45 mid-level topics, including widely recognized public topics such as music and anime.
30
+
31
+ - **Train Split**: 14.3K summaries.
32
+ - **Test Split**: 8.02K summaries.
33
+
34
+ ## Synthetic Science Fiction (Pending internal clearance process)
35
+
36
+ Please cite us if you find the data and the papers useful, and do not hesitate to create an issue or email us if you have problems!
37
+
38
+ If you find LLM-based topic generation has hallucination or instability, and coherence not applicable to LLM-based topic models:
39
+ ```
40
+ @misc{li2025largelanguagemodelsstruggle,
41
+ title={Large Language Models Struggle to Describe the Haystack without Human Help: Human-in-the-loop Evaluation of LLMs},
42
+ author={Zongxia Li and Lorena Calvo-Bartolomé and Alexander Hoyle and Paiheng Xu and Alden Dima and Juan Francisco Fung and Jordan Boyd-Graber},
43
+ year={2025},
44
+ eprint={2502.14748},
45
+ archivePrefix={arXiv},
46
+ primaryClass={cs.CL},
47
+ url={https://arxiv.org/abs/2502.14748},
48
+ }
49
+ ```
50
+
51
+ If you use the human annotations or preprocessing:
52
+ ```
53
+ @inproceedings{li-etal-2024-improving,
54
+ title = "Improving the {TENOR} of Labeling: Re-evaluating Topic Models for Content Analysis",
55
+ author = "Li, Zongxia and
56
+ Mao, Andrew and
57
+ Stephens, Daniel and
58
+ Goel, Pranav and
59
+ Walpole, Emily and
60
+ Dima, Alden and
61
+ Fung, Juan and
62
+ Boyd-Graber, Jordan",
63
+ editor = "Graham, Yvette and
64
+ Purver, Matthew",
65
+ booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
66
+ month = mar,
67
+ year = "2024",
68
+ address = "St. Julian{'}s, Malta",
69
+ publisher = "Association for Computational Linguistics",
70
+ url = "https://aclanthology.org/2024.eacl-long.51/",
71
+ pages = "840--859"
72
+ }
73
+ ```
74
+
75
+ If you want to use the claim coherence does not generalize to neural topic models:
76
+ ```
77
+ @inproceedings{hoyle-etal-2021-automated,
78
+ title = "Is Automated Topic Evaluation Broken? The Incoherence of Coherence",
79
+ author = "Hoyle, Alexander Miserlis and
80
+ Goel, Pranav and
81
+ Hian-Cheong, Andrew and
82
+ Peskov, Denis and
83
+ Boyd-Graber, Jordan and
84
+ Resnik, Philip",
85
+ booktitle = "Advances in Neural Information Processing Systems",
86
+ year = "2021",
87
+ url = "https://arxiv.org/abs/2107.02173",
88
+ }
89
+ ```
90
+
91
+
92
+ If you evaluate ground-truth evaluations or stability:
93
+ ```
94
+ @inproceedings{hoyle-etal-2022-neural,
95
+ title = "Are Neural Topic Models Broken?",
96
+ author = "Hoyle, Alexander Miserlis and
97
+ Goel, Pranav and
98
+ Sarkar, Rupak and
99
+ Resnik, Philip",
100
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
101
+ year = "2022",
102
+ publisher = "Association for Computational Linguistics",
103
+ url = "https://aclanthology.org/2022.findings-emnlp.390",
104
+ doi = "10.18653/v1/2022.findings-emnlp.390",
105
+ pages = "5321--5344",
106
+ }
107
+ ```