zeroMN's picture
Upload 517 files
8d88d9b verified
import { env } from "$env/dynamic/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import { endpointTgi } from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";
import type { PreTrainedTokenizer } from "@huggingface/transformers";
import JSON5 from "json5";
import { getTokenizer } from "$lib/utils/getTokenizer";
import { logger } from "$lib/server/logger";
import { ToolResultStatus, type ToolInput } from "$lib/types/Tool";
import { isHuggingChat } from "$lib/utils/isHuggingChat";
type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;
const reasoningSchema = z.union([
z.object({
type: z.literal("regex"), // everything is reasoning, extract the answer from the regex
regex: z.string(),
}),
z.object({
type: z.literal("tokens"), // use beginning and end tokens that define the reasoning portion of the answer
beginToken: z.string(),
endToken: z.string(),
}),
z.object({
type: z.literal("summarize"), // everything is reasoning, summarize the answer
}),
]);
const modelConfig = z.object({
/** Used as an identifier in DB */
id: z.string().optional(),
/** Used to link to the model page, and for inference */
name: z.string().default(""),
displayName: z.string().min(1).optional(),
description: z.string().min(1).optional(),
logoUrl: z.string().url().optional(),
websiteUrl: z.string().url().optional(),
modelUrl: z.string().url().optional(),
tokenizer: z
.union([
z.string(),
z.object({
tokenizerUrl: z.string().url(),
tokenizerConfigUrl: z.string().url(),
}),
])
.optional(),
datasetName: z.string().min(1).optional(),
datasetUrl: z.string().url().optional(),
preprompt: z.string().default(""),
prepromptUrl: z.string().url().optional(),
chatPromptTemplate: z.string().optional(),
promptExamples: z
.array(
z.object({
title: z.string().min(1),
prompt: z.string().min(1),
})
)
.optional(),
endpoints: z.array(endpointSchema).optional(),
parameters: z
.object({
temperature: z.number().min(0).max(2).optional(),
truncate: z.number().int().positive().optional(),
max_new_tokens: z.number().int().positive().optional(),
stop: z.array(z.string()).optional(),
top_p: z.number().positive().optional(),
top_k: z.number().positive().optional(),
repetition_penalty: z.number().min(-2).max(2).optional(),
presence_penalty: z.number().min(-2).max(2).optional(),
})
.passthrough()
.optional(),
multimodal: z.boolean().default(false),
multimodalAcceptedMimetypes: z.array(z.string()).optional(),
tools: z.boolean().default(false),
unlisted: z.boolean().default(false),
embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
/** Used to enable/disable system prompt usage */
systemRoleSupported: z.boolean().default(true),
reasoning: reasoningSchema.optional(),
});
const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS));
async function getChatPromptRender(
m: z.infer<typeof modelConfig>
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> {
if (m.chatPromptTemplate) {
return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m);
}
let tokenizer: PreTrainedTokenizer;
try {
tokenizer = await getTokenizer(m.tokenizer ?? m.id ?? m.name);
} catch (e) {
// if fetching the tokenizer fails but it wasnt manually set, use the default template
if (!m.tokenizer) {
logger.warn(
`No tokenizer found for model ${m.name}, using default template. Consider setting tokenizer manually or making sure the model is available on the hub.`,
m
);
return compileTemplate<ChatTemplateInput>(
"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
m
);
}
logger.error(
e,
`Failed to load tokenizer ${
m.tokenizer ?? m.id ?? m.name
} make sure the model is available on the hub and you have access to any gated models.`
);
process.exit();
}
const renderTemplate = ({
messages,
preprompt,
tools,
toolResults,
continueMessage,
}: ChatTemplateInput) => {
let formattedMessages: {
role: string;
content: string;
tool_calls?: { id: string; tool_call_id: string; output: string }[];
}[] = messages.map((message) => ({
content: message.content,
role: message.from,
}));
if (!m.systemRoleSupported) {
const firstSystemMessage = formattedMessages.find((msg) => msg.role === "system");
formattedMessages = formattedMessages.filter((msg) => msg.role !== "system");
if (
firstSystemMessage &&
formattedMessages.length > 0 &&
formattedMessages[0].role === "user"
) {
formattedMessages[0].content =
firstSystemMessage.content + "\n" + formattedMessages[0].content;
}
}
if (preprompt && formattedMessages[0].role !== "system") {
formattedMessages = [
{
role: m.systemRoleSupported ? "system" : "user",
content: preprompt,
},
...formattedMessages,
];
}
if (toolResults?.length) {
// todo: should update the command r+ tokenizer to support system messages at any location
// or use the `rag` mode without the citations
const id = m.id ?? m.name;
if (isHuggingChat && id.startsWith("CohereForAI")) {
formattedMessages = [
{
role: "user",
content:
"\n\n<results>\n" +
toolResults
.flatMap((result, idx) => {
if (result.status === ToolResultStatus.Error) {
return (
`Document: ${idx}\n` + `Tool "${result.call.name}" error\n` + result.message
);
}
return (
`Document: ${idx}\n` +
result.outputs
.flatMap((output) =>
Object.entries(output).map(([title, text]) => `${title}\n${text}`)
)
.join("\n")
);
})
.join("\n\n") +
"\n</results>",
},
...formattedMessages,
];
} else if (isHuggingChat && id.startsWith("meta-llama")) {
const results = toolResults.flatMap((result) => {
if (result.status === ToolResultStatus.Error) {
return [
{
tool_call_id: result.call.name,
output: "Error: " + result.message,
},
];
} else {
return result.outputs.map((output) => ({
tool_call_id: result.call.name,
output: JSON.stringify(output),
}));
}
});
formattedMessages = [
...formattedMessages,
{
role: "python",
content: JSON.stringify(results),
},
];
} else {
formattedMessages = [
...formattedMessages,
{
role: m.systemRoleSupported ? "system" : "user",
content: JSON.stringify(toolResults),
},
];
}
tools = [];
}
const mappedTools =
tools?.map((tool) => {
const inputs: Record<
string,
{
type: ToolInput["type"];
description: string;
required: boolean;
}
> = {};
for (const value of tool.inputs) {
if (value.paramType !== "fixed") {
inputs[value.name] = {
type: value.type,
description: value.description ?? "",
required: value.paramType === "required",
};
}
}
return {
name: tool.name,
description: tool.description,
parameter_definitions: inputs,
};
}) ?? [];
const output = tokenizer.apply_chat_template(formattedMessages, {
tokenize: false,
add_generation_prompt: !continueMessage,
tools: mappedTools.length ? mappedTools : undefined,
});
if (typeof output !== "string") {
throw new Error("Failed to apply chat template, the output is not a string");
}
return output;
};
return renderTemplate;
}
const processModel = async (m: z.infer<typeof modelConfig>) => ({
...m,
chatPromptRender: await getChatPromptRender(m),
id: m.id || m.name,
displayName: m.displayName || m.name,
preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});
const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
...m,
getEndpoint: async (): Promise<Endpoint> => {
if (!m.endpoints) {
return endpointTgi({
type: "tgi",
url: `${env.HF_API_ROOT}/${m.name}`,
accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN,
weight: 1,
model: m,
});
}
const totalWeight = sum(m.endpoints.map((e) => e.weight));
let random = Math.random() * totalWeight;
for (const endpoint of m.endpoints) {
if (random < endpoint.weight) {
const args = { ...endpoint, model: m };
switch (args.type) {
case "tgi":
return endpoints.tgi(args);
case "anthropic":
return endpoints.anthropic(args);
case "anthropic-vertex":
return endpoints.anthropicvertex(args);
case "bedrock":
return endpoints.bedrock(args);
case "aws":
return await endpoints.aws(args);
case "openai":
return await endpoints.openai(args);
case "llamacpp":
return endpoints.llamacpp(args);
case "ollama":
return endpoints.ollama(args);
case "vertex":
return await endpoints.vertex(args);
case "genai":
return await endpoints.genai(args);
case "cloudflare":
return await endpoints.cloudflare(args);
case "cohere":
return await endpoints.cohere(args);
case "langserve":
return await endpoints.langserve(args);
default:
// for legacy reason
return endpoints.tgi(args);
}
}
random -= endpoint.weight;
}
throw new Error(`Failed to select endpoint`);
},
});
const inferenceApiIds = isHuggingChat
? await fetch(
"https://huggingface.co/api/models?pipeline_tag=text-generation&inference=warm&filter=conversational"
)
.then((r) => r.json())
.then((json) => json.map((r: { id: string }) => r.id))
.catch((err) => {
logger.error(err, "Failed to fetch inference API ids");
return [];
})
: [];
export const models = await Promise.all(
modelsRaw.map((e) =>
processModel(e)
.then(addEndpoint)
.then(async (m) => ({
...m,
hasInferenceAPI: inferenceApiIds.includes(m.id ?? m.name),
}))
)
);
export type ProcessedModel = (typeof models)[number];
// super ugly but not sure how to make typescript happier
export const validModelIdSchema = z.enum(models.map((m) => m.id) as [string, ...string[]]);
export const defaultModel = models[0];
// Models that have been deprecated
export const oldModels = env.OLD_MODELS
? z
.array(
z.object({
id: z.string().optional(),
name: z.string().min(1),
displayName: z.string().min(1).optional(),
transferTo: validModelIdSchema.optional(),
})
)
.parse(JSON5.parse(env.OLD_MODELS))
.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
: [];
export const validateModel = (_models: BackendModel[]) => {
// Zod enum function requires 2 parameters
return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};
// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself
export const smallModel = env.TASK_MODEL
? (models.find((m) => m.name === env.TASK_MODEL) ||
(await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) =>
addEndpoint(m)
))) ??
defaultModel
: defaultModel;
export type BackendModel = Optional<
typeof defaultModel,
"preprompt" | "parameters" | "multimodal" | "unlisted" | "tools" | "hasInferenceAPI"
>;