Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,104 Bytes
9e31b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d9e052
9e31b69
 
 
 
 
 
 
 
 
 
2ae7253
 
 
 
9e31b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae7253
 
 
9e31b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d9e052
 
 
 
 
 
 
 
9e31b69
 
 
 
2ae7253
9e31b69
 
 
 
 
 
 
 
 
5d9e052
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""CiteSum dataset"""

import os
import json

import datasets


logger = datasets.logging.get_logger(__name__)


_HOMEPAGE = "https://github.com/morningmoni/CiteSum"

_DESCRIPTION = """\
CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation.  

CiteSum contains TLDR summaries for scientific papers from their citation texts without human annotation, 
making it around 30 times larger than the previous human-curated dataset SciTLDR.
"""

# The second citation introduces the source data, while the first
# introduces the specific form (non-anonymized) we use here.
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2205.06207,
  doi = {10.48550/ARXIV.2205.06207},
  url = {https://arxiv.org/abs/2205.06207},
  author = {Mao, Yuning and Zhong, Ming and Han, Jiawei},
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution 4.0 International}
}

"""

_DOWNLOAD_URL = (
    "https://drive.google.com/uc?export=download&id=1ndHCREXGSPnDUNllladh9qCtayqbXAfJ"
)


class CiteSumConfig(datasets.BuilderConfig):
    """BuilderConfig for CiteSum."""

    def __init__(self, **kwargs):
        """BuilderConfig for CiteSum.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)


class CiteSum(datasets.GeneratorBasedBuilder):
    """CiteSum summarization dataset."""

    BUILDER_CONFIGS = [CiteSumConfig(name="citesum", description="Plain text")]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "src": datasets.Value("string"),
                    "tgt": datasets.Value("string"),
                    "paper_id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "discipline": {
                        "venue": datasets.Value("string"),
                        "journal": datasets.Value("string"),
                        "mag_field_of_study": datasets.features.Sequence(
                            datasets.Value("string")
                        ),
                    },
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_path = dl_manager.download_and_extract(_DOWNLOAD_URL)

        file_mapping = {
            datasets.Split.TRAIN: "train.json",
            datasets.Split.VALIDATION: "val.json",
            datasets.Split.TEST: "test.json",
        }

        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "filepath": os.path.join(dl_path, file_mapping[split]),
                },
            )
            for split in [
                datasets.Split.TRAIN,
                datasets.Split.VALIDATION,
                datasets.Split.TEST,
            ]
        ]

    def _generate_examples(self, filepath):

        with open(filepath, "r") as fp:
            for idx, line in enumerate(fp.readlines()):
                yield idx, json.loads(line)