# Datasets for the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) **Description**: This repository contains the dataset for the D3PO method in this paper [Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model](https://arxiv.org/abs/2311.13231). The *d3po_dataset* file pertains to the image distortion experiment of the [`anything-v5`](https://huggingface.co/stablediffusionapi/anything-v5) model. The *text2img_dataset* comprises the images generated from the pretrained, preferred image fine-tuned, reward weighted fine-tuned and D3PO fine-tuned models in the prompt-image alignment experiment. **Source Code**: The code used to generate this data can be found [here](https://github.com/yk7333/D3PO/). **Directory** - d3po_dataset - epoch1 - all_img - *.png - deformed_img - *.png - json - data.json (required for training) - prompt.json - sample.pkl(required for training) - epoch2` - ... - epoch5 - text2img_dataset: - img - data_*.json - plot.ipynb - prompt.txt **Citation** ``` @article{yang2023using, title={Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model}, author={Yang, Kai and Tao, Jian and Lyu, Jiafei and Ge, Chunjiang and Chen, Jiaxin and Li, Qimai and Shen, Weihan and Zhu, Xiaolong and Li, Xiu}, journal={arXiv preprint arXiv:2311.13231}, year={2023} } ```