# if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("HiCDCPlus") # BiocManager::install("BSgenome.Hsapiens.UCSC.hg19") library(HiCDCPlus) library(BSgenome.Hsapiens.UCSC.hg19) # outdir <- "data/3D/K562_HiC/" # hicfile_path <- paste0(outdir, "GSE63525_K562_combined_30.hic") outdir <- "data/3D/GM12878_HiC/" hicfile_path <- paste0(outdir, "GSE63525_GM12878_insitu_primary_30.hic") process_chromosome <- function(chr) { cat("Processing chromosome:", chr, "\n") feature_path <- paste0(outdir, "hg19_5kb_GATC_", chr) construct_features(output_path=feature_path, gen="Hsapiens",gen_ver="hg19", sig="GATC", binsize=5000, chrs=c(chr), ) # generated file under hg19_5kb_GATC_bintolen.txt.gz # generate gi_list instance feature_output <- paste0(feature_path, "_bintolen.txt.gz") gi_list<-generate_bintolen_gi_list(bintolen_path=feature_output) # add .hic counts gi_list<-add_hic_counts(gi_list,hic_path = hicfile_path) # expand features for modeling gi_list<-expand_1D_features(gi_list) # run HiC-DC+ set.seed(1010) #HiC-DC downsamples rows for modeling gi_list<-HiCDCPlus_parallel(gi_list,ncore=2) cat("gi list length:", length(gi_list), "\n") # select FDR < 0.1 alpha <- 0.1 significant_interactions <- list() # 遍历 gi_list 中的每个 GInteractions 对象 gi_list_names <- names(gi_list) for (i in seq_along(gi_list)) { name <- gi_list_names[i] # 提取当前 GInteractions 对象 gi <- gi_list[[i]] metadata_columns <- mcols(gi) qvalues <- metadata_columns$qvalue significant_interaction <- gi[qvalues <= alpha, ] significant_interactions[[i]] <- significant_interaction names(significant_interactions) <- name } # save file # save_name = paste0(outdir,'GSE63525_K562_HiC30_FDR_1_', chr) save_name = paste0(outdir,'GSE63525_GM12878_HiC30_FDR_1_', chr) hicdc2hic(significant_interactions, hicfile=paste0(save_name, '.hic'), mode='normcounts', gen_ver='hg19' ) gi_list_write(significant_interactions,fname=paste0(save_name, '.txt.gz')) } chromosomes <- c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8", "chr9", "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16", "chr17", "chr18", "chr19", "chr20", "chr21", "chr22", "chrX") # Process each chromosome for (chr in chromosomes) { process_chromosome(chr) } # # test # library(InteractionSet) # # # 提取第一个 GInteractions 对象 # gi <- gi_list[[1]] # # # 提取元数据列 # metadata_columns <- mcols(gi) # # # 查看 qvalue 和 pvalue 列 # qvalues <- metadata_columns$qvalue # pvalues <- metadata_columns$pvalue # # # 检查 qvalue 和 pvalue 列的唯一值 # unique_qvalues <- unique(qvalues) # unique_pvalues <- unique(pvalues) # # num_qvalues_less_than_0.1 <- sum(qvalues < 0.1, na.rm = TRUE)