Datasets:
Commit
·
7cbeff8
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/cs-en/1.0.0/dummy_data.zip +3 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2013.cs +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2013.en +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2014-csen-ref.en.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2014-csen-src.cs.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2015-csen-ref.en.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2015-csen-src.cs.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2016-csen-ref.en.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2016-csen-src.cs.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2017-csen-ref.en.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2017-csen-src.cs.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2018-csen-ref.en.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2018-csen-src.cs.sgm +1 -0
- dummy/cs-en/1.0.0/dummy_data/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz/paracrawl-release1.en-cs.zipporah0-dedup-clean.cs +1 -0
- dummy/cs-en/1.0.0/dummy_data/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz/paracrawl-release1.en-cs.zipporah0-dedup-clean.en +1 -0
- dummy/cs-en/1.0.0/dummy_data/training-parallel-commoncrawl.tgz/commoncrawl.cs-en.cs +1 -0
- dummy/cs-en/1.0.0/dummy_data/training-parallel-commoncrawl.tgz/commoncrawl.cs-en.en +1 -0
- dummy/cs-en/1.0.0/dummy_data/training-parallel-europarl-v7.tgz/training/europarl-v7.cs-en.cs +1 -0
- dummy/cs-en/1.0.0/dummy_data/training-parallel-europarl-v7.tgz/training/europarl-v7.cs-en.en +1 -0
- dummy/cs-en/1.0.0/dummy_data/training-parallel-nc-v13.tgz/training-parallel-nc-v13/news-commentary-v13.cs-en.cs +1 -0
- dummy/cs-en/1.0.0/dummy_data/training-parallel-nc-v13.tgz/training-parallel-nc-v13/news-commentary-v13.cs-en.en +1 -0
- wmt18.py +86 -0
- wmt_utils.py +1018 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"cs-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "@InProceedings{bojar-EtAl:2018:WMT1,\n author = {Bojar, Ond\u000b{r}ej and Federmann, Christian and Fishel, Mark\n and Graham, Yvette and Haddow, Barry and Huck, Matthias and\n Koehn, Philipp and Monz, Christof},\n title = {Findings of the 2018 Conference on Machine Translation (WMT18)},\n booktitle = {Proceedings of the Third Conference on Machine Translation,\n Volume 2: Shared Task Papers},\n month = {October},\n year = {2018},\n address = {Belgium, Brussels},\n publisher = {Association for Computational Linguistics},\n pages = {272--307},\n url = {http://www.aclweb.org/anthology/W18-6401}\n}\n", "homepage": "http://www.statmt.org/wmt18/translation-task.html", "license": "", "features": {"translation": {"languages": ["cs", "en"], "id": null, "_type": "Translation"}}, "supervised_keys": {"input": "cs", "output": "en"}, "builder_name": "wmt18", "config_name": "cs-en", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 696229, "num_examples": 2983, "dataset_name": "wmt18"}, "train": {"name": "train", "num_bytes": 1461020779, "num_examples": 11046024, "dataset_name": "wmt18"}, "validation": {"name": "validation", "num_bytes": 674430, "num_examples": 3005, "dataset_name": "wmt18"}}, "download_checksums": {"http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz": {"num_bytes": 657632379, "checksum": "0224c7c710c8a063dfd893b0cc0830202d61f4c75c17eb8e31836103d27d96e7"}, "https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz": {"num_bytes": 299052360, "checksum": "221f88bac9f48ed6ef94bad5490890066f508be00e8f102cf19edf2a1413c350"}, "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz": {"num_bytes": 918311367, "checksum": "c7a74e2ea01ac6c920123108627e35278d4ccb5701e15428ffa34de86fa3a9e5"}, "http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz": {"num_bytes": 113157482, "checksum": "17992b7e919cfb754c60f4e754148bc23b80706ad0ed7b34150831a554b40c91"}, "http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip": {"num_bytes": 2544381, "checksum": "e66466e00aecd392daaf547275590a9264bbc6aed70118c5c7cfd6946daf24ac"}, "http://data.statmt.org/wmt19/translation-task/dev.tgz": {"num_bytes": 38654961, "checksum": "7a7deccf82ebb05ba508dba5eb21356492224e8f630ec4f992132b029b4b25e7"}}, "download_size": 2029352930, "dataset_size": 1462391438, "size_in_bytes": 3491744368}}
|
dummy/cs-en/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c5db9447b0787be367f458cf41465fc0a797b4b80a0af268801292610958c30
|
| 3 |
+
size 7514
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2013.cs
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Just a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2013.en
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Just a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2014-csen-ref.en.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2014-csen-src.cs.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2015-csen-ref.en.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2015-csen-src.cs.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2016-csen-ref.en.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2016-csen-src.cs.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2017-csen-ref.en.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2017-csen-src.cs.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2018-csen-ref.en.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/dev.tgz/dev/newstest2018-csen-src.cs.sgm
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<seg id="1"> Test </seg>
|
dummy/cs-en/1.0.0/dummy_data/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz/paracrawl-release1.en-cs.zipporah0-dedup-clean.cs
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz/paracrawl-release1.en-cs.zipporah0-dedup-clean.en
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/training-parallel-commoncrawl.tgz/commoncrawl.cs-en.cs
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/training-parallel-commoncrawl.tgz/commoncrawl.cs-en.en
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/training-parallel-europarl-v7.tgz/training/europarl-v7.cs-en.cs
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence to pass the tests.
|
dummy/cs-en/1.0.0/dummy_data/training-parallel-europarl-v7.tgz/training/europarl-v7.cs-en.en
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence
|
dummy/cs-en/1.0.0/dummy_data/training-parallel-nc-v13.tgz/training-parallel-nc-v13/news-commentary-v13.cs-en.cs
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence.
|
dummy/cs-en/1.0.0/dummy_data/training-parallel-nc-v13.tgz/training-parallel-nc-v13/news-commentary-v13.cs-en.en
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This is a test sentence.
|
wmt18.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""WMT18: Translate dataset."""
|
| 18 |
+
|
| 19 |
+
import datasets
|
| 20 |
+
|
| 21 |
+
from .wmt_utils import CWMT_SUBSET_NAMES, Wmt, WmtConfig
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
_URL = "http://www.statmt.org/wmt18/translation-task.html"
|
| 25 |
+
_CITATION = """\
|
| 26 |
+
@InProceedings{bojar-EtAl:2018:WMT1,
|
| 27 |
+
author = {Bojar, Ond\v{r}ej and Federmann, Christian and Fishel, Mark
|
| 28 |
+
and Graham, Yvette and Haddow, Barry and Huck, Matthias and
|
| 29 |
+
Koehn, Philipp and Monz, Christof},
|
| 30 |
+
title = {Findings of the 2018 Conference on Machine Translation (WMT18)},
|
| 31 |
+
booktitle = {Proceedings of the Third Conference on Machine Translation,
|
| 32 |
+
Volume 2: Shared Task Papers},
|
| 33 |
+
month = {October},
|
| 34 |
+
year = {2018},
|
| 35 |
+
address = {Belgium, Brussels},
|
| 36 |
+
publisher = {Association for Computational Linguistics},
|
| 37 |
+
pages = {272--307},
|
| 38 |
+
url = {http://www.aclweb.org/anthology/W18-6401}
|
| 39 |
+
}
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
_LANGUAGE_PAIRS = [(lang, "en") for lang in ["cs", "de", "et", "fi", "kk", "ru", "tr", "zh"]]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class Wmt18(Wmt):
|
| 46 |
+
"""WMT 18 translation datasets for all {xx, "en"} language pairs."""
|
| 47 |
+
|
| 48 |
+
# Version history:
|
| 49 |
+
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
|
| 50 |
+
BUILDER_CONFIGS = [
|
| 51 |
+
WmtConfig( # pylint:disable=g-complex-comprehension
|
| 52 |
+
description="WMT 2018 %s-%s translation task dataset." % (l1, l2),
|
| 53 |
+
url=_URL,
|
| 54 |
+
citation=_CITATION,
|
| 55 |
+
language_pair=(l1, l2),
|
| 56 |
+
version=datasets.Version("1.0.0"),
|
| 57 |
+
)
|
| 58 |
+
for l1, l2 in _LANGUAGE_PAIRS
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
@property
|
| 62 |
+
def manual_download_instructions(self):
|
| 63 |
+
if self.config.language_pair[1] in ["cs", "hi", "ru"]:
|
| 64 |
+
return "Please download the data manually as explained. TODO(PVP)"
|
| 65 |
+
|
| 66 |
+
@property
|
| 67 |
+
def _subsets(self):
|
| 68 |
+
return {
|
| 69 |
+
datasets.Split.TRAIN: [
|
| 70 |
+
"europarl_v7",
|
| 71 |
+
"europarl_v8_18",
|
| 72 |
+
"paracrawl_v1",
|
| 73 |
+
"commoncrawl",
|
| 74 |
+
"newscommentary_v13",
|
| 75 |
+
"czeng_17",
|
| 76 |
+
"yandexcorpus",
|
| 77 |
+
"wikiheadlines_fi",
|
| 78 |
+
"wikiheadlines_ru",
|
| 79 |
+
"setimes_2",
|
| 80 |
+
"uncorpus_v1",
|
| 81 |
+
"rapid_2016",
|
| 82 |
+
]
|
| 83 |
+
+ CWMT_SUBSET_NAMES,
|
| 84 |
+
datasets.Split.VALIDATION: ["newsdev2018", "newstest2017", "newstestB2017"],
|
| 85 |
+
datasets.Split.TEST: ["newstest2018"],
|
| 86 |
+
}
|
wmt_utils.py
ADDED
|
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""WMT: Translate dataset."""
|
| 18 |
+
|
| 19 |
+
from __future__ import absolute_import, division, print_function
|
| 20 |
+
|
| 21 |
+
import codecs
|
| 22 |
+
import functools
|
| 23 |
+
import glob
|
| 24 |
+
import gzip
|
| 25 |
+
import itertools
|
| 26 |
+
import logging
|
| 27 |
+
import os
|
| 28 |
+
import re
|
| 29 |
+
import xml.etree.cElementTree as ElementTree
|
| 30 |
+
from abc import ABC, abstractmethod
|
| 31 |
+
|
| 32 |
+
import six
|
| 33 |
+
|
| 34 |
+
import datasets
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
_DESCRIPTION = """\
|
| 38 |
+
Translate dataset based on the data from statmt.org.
|
| 39 |
+
|
| 40 |
+
Versions exists for the different years using a combination of multiple data
|
| 41 |
+
sources. The base `wmt_translate` allows you to create your own config to choose
|
| 42 |
+
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
|
| 43 |
+
|
| 44 |
+
```
|
| 45 |
+
config = datasets.wmt.WmtConfig(
|
| 46 |
+
version="0.0.1",
|
| 47 |
+
language_pair=("fr", "de"),
|
| 48 |
+
subsets={
|
| 49 |
+
datasets.Split.TRAIN: ["commoncrawl_frde"],
|
| 50 |
+
datasets.Split.VALIDATION: ["euelections_dev2019"],
|
| 51 |
+
},
|
| 52 |
+
)
|
| 53 |
+
builder = datasets.builder("wmt_translate", config=config)
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
CWMT_SUBSET_NAMES = ["casia2015", "casict2011", "casict2015", "datum2015", "datum2017", "neu2017"]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SubDataset(object):
|
| 63 |
+
"""Class to keep track of information on a sub-dataset of WMT."""
|
| 64 |
+
|
| 65 |
+
def __init__(self, name, target, sources, url, path, manual_dl_files=None):
|
| 66 |
+
"""Sub-dataset of WMT.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
name: `string`, a unique dataset identifier.
|
| 70 |
+
target: `string`, the target language code.
|
| 71 |
+
sources: `set<string>`, the set of source language codes.
|
| 72 |
+
url: `string` or `(string, string)`, URL(s) or URL template(s) specifying
|
| 73 |
+
where to download the raw data from. If two strings are provided, the
|
| 74 |
+
first is used for the source language and the second for the target.
|
| 75 |
+
Template strings can either contain '{src}' placeholders that will be
|
| 76 |
+
filled in with the source language code, '{0}' and '{1}' placeholders
|
| 77 |
+
that will be filled in with the source and target language codes in
|
| 78 |
+
alphabetical order, or all 3.
|
| 79 |
+
path: `string` or `(string, string)`, path(s) or path template(s)
|
| 80 |
+
specifing the path to the raw data relative to the root of the
|
| 81 |
+
downloaded archive. If two strings are provided, the dataset is assumed
|
| 82 |
+
to be made up of parallel text files, the first being the source and the
|
| 83 |
+
second the target. If one string is provided, both languages are assumed
|
| 84 |
+
to be stored within the same file and the extension is used to determine
|
| 85 |
+
how to parse it. Template strings should be formatted the same as in
|
| 86 |
+
`url`.
|
| 87 |
+
manual_dl_files: `<list>(string)` (optional), the list of files that must
|
| 88 |
+
be manually downloaded to the data directory.
|
| 89 |
+
"""
|
| 90 |
+
self._paths = (path,) if isinstance(path, six.string_types) else path
|
| 91 |
+
self._urls = (url,) if isinstance(url, six.string_types) else url
|
| 92 |
+
self._manual_dl_files = manual_dl_files if manual_dl_files else []
|
| 93 |
+
self.name = name
|
| 94 |
+
self.target = target
|
| 95 |
+
self.sources = set(sources)
|
| 96 |
+
|
| 97 |
+
def _inject_language(self, src, strings):
|
| 98 |
+
"""Injects languages into (potentially) template strings."""
|
| 99 |
+
if src not in self.sources:
|
| 100 |
+
raise ValueError("Invalid source for '{0}': {1}".format(self.name, src))
|
| 101 |
+
|
| 102 |
+
def _format_string(s):
|
| 103 |
+
if "{0}" in s and "{1}" and "{src}" in s:
|
| 104 |
+
return s.format(*sorted([src, self.target]), src=src)
|
| 105 |
+
elif "{0}" in s and "{1}" in s:
|
| 106 |
+
return s.format(*sorted([src, self.target]))
|
| 107 |
+
elif "{src}" in s:
|
| 108 |
+
return s.format(src=src)
|
| 109 |
+
else:
|
| 110 |
+
return s
|
| 111 |
+
|
| 112 |
+
return [_format_string(s) for s in strings]
|
| 113 |
+
|
| 114 |
+
def get_url(self, src):
|
| 115 |
+
return self._inject_language(src, self._urls)
|
| 116 |
+
|
| 117 |
+
def get_manual_dl_files(self, src):
|
| 118 |
+
return self._inject_language(src, self._manual_dl_files)
|
| 119 |
+
|
| 120 |
+
def get_path(self, src):
|
| 121 |
+
return self._inject_language(src, self._paths)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
# Subsets used in the training sets for various years of WMT.
|
| 125 |
+
_TRAIN_SUBSETS = [
|
| 126 |
+
# pylint:disable=line-too-long
|
| 127 |
+
SubDataset(
|
| 128 |
+
name="commoncrawl",
|
| 129 |
+
target="en", # fr-de pair in commoncrawl_frde
|
| 130 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
| 131 |
+
url="http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz",
|
| 132 |
+
path=("commoncrawl.{src}-en.{src}", "commoncrawl.{src}-en.en"),
|
| 133 |
+
),
|
| 134 |
+
SubDataset(
|
| 135 |
+
name="commoncrawl_frde",
|
| 136 |
+
target="de",
|
| 137 |
+
sources={"fr"},
|
| 138 |
+
url=(
|
| 139 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/commoncrawl.fr.gz",
|
| 140 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/commoncrawl.de.gz",
|
| 141 |
+
),
|
| 142 |
+
path=("", ""),
|
| 143 |
+
),
|
| 144 |
+
SubDataset(
|
| 145 |
+
name="czeng_10",
|
| 146 |
+
target="en",
|
| 147 |
+
sources={"cs"},
|
| 148 |
+
url="http://ufal.mff.cuni.cz/czeng/czeng10",
|
| 149 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
| 150 |
+
# Each tar contains multiple files, which we process specially in
|
| 151 |
+
# _parse_czeng.
|
| 152 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
| 153 |
+
),
|
| 154 |
+
SubDataset(
|
| 155 |
+
name="czeng_16pre",
|
| 156 |
+
target="en",
|
| 157 |
+
sources={"cs"},
|
| 158 |
+
url="http://ufal.mff.cuni.cz/czeng/czeng16pre",
|
| 159 |
+
manual_dl_files=["czeng16pre.deduped-ignoring-sections.txt.gz"],
|
| 160 |
+
path="",
|
| 161 |
+
),
|
| 162 |
+
SubDataset(
|
| 163 |
+
name="czeng_16",
|
| 164 |
+
target="en",
|
| 165 |
+
sources={"cs"},
|
| 166 |
+
url="http://ufal.mff.cuni.cz/czeng",
|
| 167 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
| 168 |
+
# Each tar contains multiple files, which we process specially in
|
| 169 |
+
# _parse_czeng.
|
| 170 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
| 171 |
+
),
|
| 172 |
+
SubDataset(
|
| 173 |
+
# This dataset differs from the above in the filtering that is applied
|
| 174 |
+
# during parsing.
|
| 175 |
+
name="czeng_17",
|
| 176 |
+
target="en",
|
| 177 |
+
sources={"cs"},
|
| 178 |
+
url="http://ufal.mff.cuni.cz/czeng",
|
| 179 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
| 180 |
+
# Each tar contains multiple files, which we process specially in
|
| 181 |
+
# _parse_czeng.
|
| 182 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
| 183 |
+
),
|
| 184 |
+
SubDataset(
|
| 185 |
+
name="dcep_v1",
|
| 186 |
+
target="en",
|
| 187 |
+
sources={"lv"},
|
| 188 |
+
url="http://data.statmt.org/wmt17/translation-task/dcep.lv-en.v1.tgz",
|
| 189 |
+
path=("dcep.en-lv/dcep.lv", "dcep.en-lv/dcep.en"),
|
| 190 |
+
),
|
| 191 |
+
SubDataset(
|
| 192 |
+
name="europarl_v7",
|
| 193 |
+
target="en",
|
| 194 |
+
sources={"cs", "de", "es", "fr"},
|
| 195 |
+
url="http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz",
|
| 196 |
+
path=("training/europarl-v7.{src}-en.{src}", "training/europarl-v7.{src}-en.en"),
|
| 197 |
+
),
|
| 198 |
+
SubDataset(
|
| 199 |
+
name="europarl_v7_frde",
|
| 200 |
+
target="de",
|
| 201 |
+
sources={"fr"},
|
| 202 |
+
url=(
|
| 203 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/europarl-v7.fr.gz",
|
| 204 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/europarl-v7.de.gz",
|
| 205 |
+
),
|
| 206 |
+
path=("", ""),
|
| 207 |
+
),
|
| 208 |
+
SubDataset(
|
| 209 |
+
name="europarl_v8_18",
|
| 210 |
+
target="en",
|
| 211 |
+
sources={"et", "fi"},
|
| 212 |
+
url="http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz",
|
| 213 |
+
path=("training/europarl-v8.{src}-en.{src}", "training/europarl-v8.{src}-en.en"),
|
| 214 |
+
),
|
| 215 |
+
SubDataset(
|
| 216 |
+
name="europarl_v8_16",
|
| 217 |
+
target="en",
|
| 218 |
+
sources={"fi", "ro"},
|
| 219 |
+
url="http://data.statmt.org/wmt16/translation-task/training-parallel-ep-v8.tgz",
|
| 220 |
+
path=("training-parallel-ep-v8/europarl-v8.{src}-en.{src}", "training-parallel-ep-v8/europarl-v8.{src}-en.en"),
|
| 221 |
+
),
|
| 222 |
+
SubDataset(
|
| 223 |
+
name="europarl_v9",
|
| 224 |
+
target="en",
|
| 225 |
+
sources={"cs", "de", "fi", "lt"},
|
| 226 |
+
url="http://www.statmt.org/europarl/v9/training/europarl-v9.{src}-en.tsv.gz",
|
| 227 |
+
path="",
|
| 228 |
+
),
|
| 229 |
+
SubDataset(
|
| 230 |
+
name="gigafren",
|
| 231 |
+
target="en",
|
| 232 |
+
sources={"fr"},
|
| 233 |
+
url="http://www.statmt.org/wmt10/training-giga-fren.tar",
|
| 234 |
+
path=("giga-fren.release2.fixed.fr.gz", "giga-fren.release2.fixed.en.gz"),
|
| 235 |
+
),
|
| 236 |
+
SubDataset(
|
| 237 |
+
name="hindencorp_01",
|
| 238 |
+
target="en",
|
| 239 |
+
sources={"hi"},
|
| 240 |
+
url="http://ufallab.ms.mff.cuni.cz/~bojar/hindencorp",
|
| 241 |
+
manual_dl_files=["hindencorp0.1.gz"],
|
| 242 |
+
path="",
|
| 243 |
+
),
|
| 244 |
+
SubDataset(
|
| 245 |
+
name="leta_v1",
|
| 246 |
+
target="en",
|
| 247 |
+
sources={"lv"},
|
| 248 |
+
url="http://data.statmt.org/wmt17/translation-task/leta.v1.tgz",
|
| 249 |
+
path=("LETA-lv-en/leta.lv", "LETA-lv-en/leta.en"),
|
| 250 |
+
),
|
| 251 |
+
SubDataset(
|
| 252 |
+
name="multiun",
|
| 253 |
+
target="en",
|
| 254 |
+
sources={"es", "fr"},
|
| 255 |
+
url="http://www.statmt.org/wmt13/training-parallel-un.tgz",
|
| 256 |
+
path=("un/undoc.2000.{src}-en.{src}", "un/undoc.2000.{src}-en.en"),
|
| 257 |
+
),
|
| 258 |
+
SubDataset(
|
| 259 |
+
name="newscommentary_v9",
|
| 260 |
+
target="en",
|
| 261 |
+
sources={"cs", "de", "fr", "ru"},
|
| 262 |
+
url="http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz",
|
| 263 |
+
path=("training/news-commentary-v9.{src}-en.{src}", "training/news-commentary-v9.{src}-en.en"),
|
| 264 |
+
),
|
| 265 |
+
SubDataset(
|
| 266 |
+
name="newscommentary_v10",
|
| 267 |
+
target="en",
|
| 268 |
+
sources={"cs", "de", "fr", "ru"},
|
| 269 |
+
url="http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz",
|
| 270 |
+
path=("news-commentary-v10.{src}-en.{src}", "news-commentary-v10.{src}-en.en"),
|
| 271 |
+
),
|
| 272 |
+
SubDataset(
|
| 273 |
+
name="newscommentary_v11",
|
| 274 |
+
target="en",
|
| 275 |
+
sources={"cs", "de", "ru"},
|
| 276 |
+
url="http://data.statmt.org/wmt16/translation-task/training-parallel-nc-v11.tgz",
|
| 277 |
+
path=(
|
| 278 |
+
"training-parallel-nc-v11/news-commentary-v11.{src}-en.{src}",
|
| 279 |
+
"training-parallel-nc-v11/news-commentary-v11.{src}-en.en",
|
| 280 |
+
),
|
| 281 |
+
),
|
| 282 |
+
SubDataset(
|
| 283 |
+
name="newscommentary_v12",
|
| 284 |
+
target="en",
|
| 285 |
+
sources={"cs", "de", "ru", "zh"},
|
| 286 |
+
url="http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz",
|
| 287 |
+
path=("training/news-commentary-v12.{src}-en.{src}", "training/news-commentary-v12.{src}-en.en"),
|
| 288 |
+
),
|
| 289 |
+
SubDataset(
|
| 290 |
+
name="newscommentary_v13",
|
| 291 |
+
target="en",
|
| 292 |
+
sources={"cs", "de", "ru", "zh"},
|
| 293 |
+
url="http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz",
|
| 294 |
+
path=(
|
| 295 |
+
"training-parallel-nc-v13/news-commentary-v13.{src}-en.{src}",
|
| 296 |
+
"training-parallel-nc-v13/news-commentary-v13.{src}-en.en",
|
| 297 |
+
),
|
| 298 |
+
),
|
| 299 |
+
SubDataset(
|
| 300 |
+
name="newscommentary_v14",
|
| 301 |
+
target="en", # fr-de pair in newscommentary_v14_frde
|
| 302 |
+
sources={"cs", "de", "kk", "ru", "zh"},
|
| 303 |
+
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.{0}-{1}.tsv.gz",
|
| 304 |
+
path="",
|
| 305 |
+
),
|
| 306 |
+
SubDataset(
|
| 307 |
+
name="newscommentary_v14_frde",
|
| 308 |
+
target="de",
|
| 309 |
+
sources={"fr"},
|
| 310 |
+
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz",
|
| 311 |
+
path="",
|
| 312 |
+
),
|
| 313 |
+
SubDataset(
|
| 314 |
+
name="onlinebooks_v1",
|
| 315 |
+
target="en",
|
| 316 |
+
sources={"lv"},
|
| 317 |
+
url="http://data.statmt.org/wmt17/translation-task/books.lv-en.v1.tgz",
|
| 318 |
+
path=("farewell/farewell.lv", "farewell/farewell.en"),
|
| 319 |
+
),
|
| 320 |
+
SubDataset(
|
| 321 |
+
name="paracrawl_v1",
|
| 322 |
+
target="en",
|
| 323 |
+
sources={"cs", "de", "et", "fi", "ru"},
|
| 324 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-{src}.zipporah0-dedup-clean.tgz",
|
| 325 |
+
path=(
|
| 326 |
+
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.{src}",
|
| 327 |
+
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.en",
|
| 328 |
+
),
|
| 329 |
+
),
|
| 330 |
+
SubDataset(
|
| 331 |
+
name="paracrawl_v1_ru",
|
| 332 |
+
target="en",
|
| 333 |
+
sources={"ru"},
|
| 334 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz",
|
| 335 |
+
path=(
|
| 336 |
+
"paracrawl-release1.en-ru.zipporah0-dedup-clean.ru",
|
| 337 |
+
"paracrawl-release1.en-ru.zipporah0-dedup-clean.en",
|
| 338 |
+
),
|
| 339 |
+
),
|
| 340 |
+
SubDataset(
|
| 341 |
+
name="paracrawl_v3",
|
| 342 |
+
target="en", # fr-de pair in paracrawl_v3_frde
|
| 343 |
+
sources={"cs", "de", "fi", "lt"},
|
| 344 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-{src}.bicleaner07.tmx.gz",
|
| 345 |
+
path="",
|
| 346 |
+
),
|
| 347 |
+
SubDataset(
|
| 348 |
+
name="paracrawl_v3_frde",
|
| 349 |
+
target="de",
|
| 350 |
+
sources={"fr"},
|
| 351 |
+
url=(
|
| 352 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz",
|
| 353 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz",
|
| 354 |
+
),
|
| 355 |
+
path=("", ""),
|
| 356 |
+
),
|
| 357 |
+
SubDataset(
|
| 358 |
+
name="rapid_2016",
|
| 359 |
+
target="en",
|
| 360 |
+
sources={"de", "et", "fi"},
|
| 361 |
+
url="http://data.statmt.org/wmt18/translation-task/rapid2016.tgz",
|
| 362 |
+
path=("rapid2016.{0}-{1}.{src}", "rapid2016.{0}-{1}.en"),
|
| 363 |
+
),
|
| 364 |
+
SubDataset(
|
| 365 |
+
name="rapid_2016_ltfi",
|
| 366 |
+
target="en",
|
| 367 |
+
sources={"fi", "lt"},
|
| 368 |
+
url="https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-{src}.tmx.zip",
|
| 369 |
+
path="rapid2016.en-{src}.tmx",
|
| 370 |
+
),
|
| 371 |
+
SubDataset(
|
| 372 |
+
name="rapid_2019",
|
| 373 |
+
target="en",
|
| 374 |
+
sources={"de"},
|
| 375 |
+
url="https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip",
|
| 376 |
+
path=("rapid2019.de-en.de", "rapid2019.de-en.en"),
|
| 377 |
+
),
|
| 378 |
+
SubDataset(
|
| 379 |
+
name="setimes_2",
|
| 380 |
+
target="en",
|
| 381 |
+
sources={"ro", "tr"},
|
| 382 |
+
url="http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-{src}.tmx.gz",
|
| 383 |
+
path="",
|
| 384 |
+
),
|
| 385 |
+
SubDataset(
|
| 386 |
+
name="uncorpus_v1",
|
| 387 |
+
target="en",
|
| 388 |
+
sources={"ru", "zh"},
|
| 389 |
+
url="https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-{src}.tar.gz",
|
| 390 |
+
path=("en-{src}/UNv1.0.en-{src}.{src}", "en-{src}/UNv1.0.en-{src}.en"),
|
| 391 |
+
),
|
| 392 |
+
SubDataset(
|
| 393 |
+
name="wikiheadlines_fi",
|
| 394 |
+
target="en",
|
| 395 |
+
sources={"fi"},
|
| 396 |
+
url="http://www.statmt.org/wmt15/wiki-titles.tgz",
|
| 397 |
+
path="wiki/fi-en/titles.fi-en",
|
| 398 |
+
),
|
| 399 |
+
SubDataset(
|
| 400 |
+
name="wikiheadlines_hi",
|
| 401 |
+
target="en",
|
| 402 |
+
sources={"hi"},
|
| 403 |
+
url="http://www.statmt.org/wmt14/wiki-titles.tgz",
|
| 404 |
+
path="wiki/hi-en/wiki-titles.hi-en",
|
| 405 |
+
),
|
| 406 |
+
SubDataset(
|
| 407 |
+
# Verified that wmt14 and wmt15 files are identical.
|
| 408 |
+
name="wikiheadlines_ru",
|
| 409 |
+
target="en",
|
| 410 |
+
sources={"ru"},
|
| 411 |
+
url="http://www.statmt.org/wmt15/wiki-titles.tgz",
|
| 412 |
+
path="wiki/ru-en/wiki.ru-en",
|
| 413 |
+
),
|
| 414 |
+
SubDataset(
|
| 415 |
+
name="wikititles_v1",
|
| 416 |
+
target="en",
|
| 417 |
+
sources={"cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"},
|
| 418 |
+
url="http://data.statmt.org/wikititles/v1/wikititles-v1.{src}-en.tsv.gz",
|
| 419 |
+
path="",
|
| 420 |
+
),
|
| 421 |
+
SubDataset(
|
| 422 |
+
name="yandexcorpus",
|
| 423 |
+
target="en",
|
| 424 |
+
sources={"ru"},
|
| 425 |
+
url="https://translate.yandex.ru/corpus?lang=en",
|
| 426 |
+
manual_dl_files=["1mcorpus.zip"],
|
| 427 |
+
path=("corpus.en_ru.1m.ru", "corpus.en_ru.1m.en"),
|
| 428 |
+
),
|
| 429 |
+
# pylint:enable=line-too-long
|
| 430 |
+
] + [
|
| 431 |
+
SubDataset( # pylint:disable=g-complex-comprehension
|
| 432 |
+
name=ss,
|
| 433 |
+
target="en",
|
| 434 |
+
sources={"zh"},
|
| 435 |
+
url="ftp://cwmt-wmt:[email protected]/parallel/%s.zip" % ss,
|
| 436 |
+
path=("%s/*_c[hn].txt" % ss, "%s/*_en.txt" % ss),
|
| 437 |
+
)
|
| 438 |
+
for ss in CWMT_SUBSET_NAMES
|
| 439 |
+
]
|
| 440 |
+
|
| 441 |
+
_DEV_SUBSETS = [
|
| 442 |
+
SubDataset(
|
| 443 |
+
name="euelections_dev2019",
|
| 444 |
+
target="de",
|
| 445 |
+
sources={"fr"},
|
| 446 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 447 |
+
path=("dev/euelections_dev2019.fr-de.src.fr", "dev/euelections_dev2019.fr-de.tgt.de"),
|
| 448 |
+
),
|
| 449 |
+
SubDataset(
|
| 450 |
+
name="newsdev2014",
|
| 451 |
+
target="en",
|
| 452 |
+
sources={"hi"},
|
| 453 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 454 |
+
path=("dev/newsdev2014.hi", "dev/newsdev2014.en"),
|
| 455 |
+
),
|
| 456 |
+
SubDataset(
|
| 457 |
+
name="newsdev2015",
|
| 458 |
+
target="en",
|
| 459 |
+
sources={"fi"},
|
| 460 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 461 |
+
path=("dev/newsdev2015-fien-src.{src}.sgm", "dev/newsdev2015-fien-ref.en.sgm"),
|
| 462 |
+
),
|
| 463 |
+
SubDataset(
|
| 464 |
+
name="newsdiscussdev2015",
|
| 465 |
+
target="en",
|
| 466 |
+
sources={"ro", "tr"},
|
| 467 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 468 |
+
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
| 469 |
+
),
|
| 470 |
+
SubDataset(
|
| 471 |
+
name="newsdev2016",
|
| 472 |
+
target="en",
|
| 473 |
+
sources={"ro", "tr"},
|
| 474 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 475 |
+
path=("dev/newsdev2016-{src}en-src.{src}.sgm", "dev/newsdev2016-{src}en-ref.en.sgm"),
|
| 476 |
+
),
|
| 477 |
+
SubDataset(
|
| 478 |
+
name="newsdev2017",
|
| 479 |
+
target="en",
|
| 480 |
+
sources={"lv", "zh"},
|
| 481 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 482 |
+
path=("dev/newsdev2017-{src}en-src.{src}.sgm", "dev/newsdev2017-{src}en-ref.en.sgm"),
|
| 483 |
+
),
|
| 484 |
+
SubDataset(
|
| 485 |
+
name="newsdev2018",
|
| 486 |
+
target="en",
|
| 487 |
+
sources={"et"},
|
| 488 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 489 |
+
path=("dev/newsdev2018-{src}en-src.{src}.sgm", "dev/newsdev2018-{src}en-ref.en.sgm"),
|
| 490 |
+
),
|
| 491 |
+
SubDataset(
|
| 492 |
+
name="newsdev2019",
|
| 493 |
+
target="en",
|
| 494 |
+
sources={"gu", "kk", "lt"},
|
| 495 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 496 |
+
path=("dev/newsdev2019-{src}en-src.{src}.sgm", "dev/newsdev2019-{src}en-ref.en.sgm"),
|
| 497 |
+
),
|
| 498 |
+
SubDataset(
|
| 499 |
+
name="newsdiscussdev2015",
|
| 500 |
+
target="en",
|
| 501 |
+
sources={"fr"},
|
| 502 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 503 |
+
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
| 504 |
+
),
|
| 505 |
+
SubDataset(
|
| 506 |
+
name="newsdiscusstest2015",
|
| 507 |
+
target="en",
|
| 508 |
+
sources={"fr"},
|
| 509 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 510 |
+
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
| 511 |
+
),
|
| 512 |
+
SubDataset(
|
| 513 |
+
name="newssyscomb2009",
|
| 514 |
+
target="en",
|
| 515 |
+
sources={"cs", "de", "es", "fr"},
|
| 516 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 517 |
+
path=("dev/newssyscomb2009.{src}", "dev/newssyscomb2009.en"),
|
| 518 |
+
),
|
| 519 |
+
SubDataset(
|
| 520 |
+
name="newstest2008",
|
| 521 |
+
target="en",
|
| 522 |
+
sources={"cs", "de", "es", "fr", "hu"},
|
| 523 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 524 |
+
path=("dev/news-test2008.{src}", "dev/news-test2008.en"),
|
| 525 |
+
),
|
| 526 |
+
SubDataset(
|
| 527 |
+
name="newstest2009",
|
| 528 |
+
target="en",
|
| 529 |
+
sources={"cs", "de", "es", "fr"},
|
| 530 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 531 |
+
path=("dev/newstest2009.{src}", "dev/newstest2009.en"),
|
| 532 |
+
),
|
| 533 |
+
SubDataset(
|
| 534 |
+
name="newstest2010",
|
| 535 |
+
target="en",
|
| 536 |
+
sources={"cs", "de", "es", "fr"},
|
| 537 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 538 |
+
path=("dev/newstest2010.{src}", "dev/newstest2010.en"),
|
| 539 |
+
),
|
| 540 |
+
SubDataset(
|
| 541 |
+
name="newstest2011",
|
| 542 |
+
target="en",
|
| 543 |
+
sources={"cs", "de", "es", "fr"},
|
| 544 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 545 |
+
path=("dev/newstest2011.{src}", "dev/newstest2011.en"),
|
| 546 |
+
),
|
| 547 |
+
SubDataset(
|
| 548 |
+
name="newstest2012",
|
| 549 |
+
target="en",
|
| 550 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
| 551 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 552 |
+
path=("dev/newstest2012.{src}", "dev/newstest2012.en"),
|
| 553 |
+
),
|
| 554 |
+
SubDataset(
|
| 555 |
+
name="newstest2013",
|
| 556 |
+
target="en",
|
| 557 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
| 558 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 559 |
+
path=("dev/newstest2013.{src}", "dev/newstest2013.en"),
|
| 560 |
+
),
|
| 561 |
+
SubDataset(
|
| 562 |
+
name="newstest2014",
|
| 563 |
+
target="en",
|
| 564 |
+
sources={"cs", "de", "es", "fr", "hi", "ru"},
|
| 565 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 566 |
+
path=("dev/newstest2014-{src}en-src.{src}.sgm", "dev/newstest2014-{src}en-ref.en.sgm"),
|
| 567 |
+
),
|
| 568 |
+
SubDataset(
|
| 569 |
+
name="newstest2015",
|
| 570 |
+
target="en",
|
| 571 |
+
sources={"cs", "de", "fi", "ru"},
|
| 572 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 573 |
+
path=("dev/newstest2015-{src}en-src.{src}.sgm", "dev/newstest2015-{src}en-ref.en.sgm"),
|
| 574 |
+
),
|
| 575 |
+
SubDataset(
|
| 576 |
+
name="newsdiscusstest2015",
|
| 577 |
+
target="en",
|
| 578 |
+
sources={"fr"},
|
| 579 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 580 |
+
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
| 581 |
+
),
|
| 582 |
+
SubDataset(
|
| 583 |
+
name="newstest2016",
|
| 584 |
+
target="en",
|
| 585 |
+
sources={"cs", "de", "fi", "ro", "ru", "tr"},
|
| 586 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 587 |
+
path=("dev/newstest2016-{src}en-src.{src}.sgm", "dev/newstest2016-{src}en-ref.en.sgm"),
|
| 588 |
+
),
|
| 589 |
+
SubDataset(
|
| 590 |
+
name="newstestB2016",
|
| 591 |
+
target="en",
|
| 592 |
+
sources={"fi"},
|
| 593 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 594 |
+
path=("dev/newstestB2016-enfi-ref.{src}.sgm", "dev/newstestB2016-enfi-src.en.sgm"),
|
| 595 |
+
),
|
| 596 |
+
SubDataset(
|
| 597 |
+
name="newstest2017",
|
| 598 |
+
target="en",
|
| 599 |
+
sources={"cs", "de", "fi", "lv", "ru", "tr", "zh"},
|
| 600 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 601 |
+
path=("dev/newstest2017-{src}en-src.{src}.sgm", "dev/newstest2017-{src}en-ref.en.sgm"),
|
| 602 |
+
),
|
| 603 |
+
SubDataset(
|
| 604 |
+
name="newstestB2017",
|
| 605 |
+
target="en",
|
| 606 |
+
sources={"fi"},
|
| 607 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 608 |
+
path=("dev/newstestB2017-fien-src.fi.sgm", "dev/newstestB2017-fien-ref.en.sgm"),
|
| 609 |
+
),
|
| 610 |
+
SubDataset(
|
| 611 |
+
name="newstest2018",
|
| 612 |
+
target="en",
|
| 613 |
+
sources={"cs", "de", "et", "fi", "ru", "tr", "zh"},
|
| 614 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
| 615 |
+
path=("dev/newstest2018-{src}en-src.{src}.sgm", "dev/newstest2018-{src}en-ref.en.sgm"),
|
| 616 |
+
),
|
| 617 |
+
]
|
| 618 |
+
|
| 619 |
+
DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS}
|
| 620 |
+
|
| 621 |
+
_CZENG17_FILTER = SubDataset(
|
| 622 |
+
name="czeng17_filter",
|
| 623 |
+
target="en",
|
| 624 |
+
sources={"cs"},
|
| 625 |
+
url="http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip",
|
| 626 |
+
path="convert_czeng16_to_17.pl",
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
class WmtConfig(datasets.BuilderConfig):
|
| 631 |
+
"""BuilderConfig for WMT."""
|
| 632 |
+
|
| 633 |
+
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs):
|
| 634 |
+
"""BuilderConfig for WMT.
|
| 635 |
+
|
| 636 |
+
Args:
|
| 637 |
+
url: The reference URL for the dataset.
|
| 638 |
+
citation: The paper citation for the dataset.
|
| 639 |
+
description: The description of the dataset.
|
| 640 |
+
language_pair: pair of languages that will be used for translation. Should
|
| 641 |
+
contain 2 letter coded strings. For example: ("en", "de").
|
| 642 |
+
configuration for the `datasets.features.text.TextEncoder` used for the
|
| 643 |
+
`datasets.features.text.Translation` features.
|
| 644 |
+
subsets: Dict[split, list[str]]. List of the subset to use for each of the
|
| 645 |
+
split. Note that WMT subclasses overwrite this parameter.
|
| 646 |
+
**kwargs: keyword arguments forwarded to super.
|
| 647 |
+
"""
|
| 648 |
+
name = "%s-%s" % (language_pair[0], language_pair[1])
|
| 649 |
+
if "name" in kwargs: # Add name suffix for custom configs
|
| 650 |
+
name += "." + kwargs.pop("name")
|
| 651 |
+
|
| 652 |
+
super(WmtConfig, self).__init__(name=name, description=description, **kwargs)
|
| 653 |
+
|
| 654 |
+
self.url = url or "http://www.statmt.org"
|
| 655 |
+
self.citation = citation
|
| 656 |
+
self.language_pair = language_pair
|
| 657 |
+
self.subsets = subsets
|
| 658 |
+
|
| 659 |
+
# TODO(PVP): remove when manual dir works
|
| 660 |
+
# +++++++++++++++++++++
|
| 661 |
+
if language_pair[1] in ["cs", "hi", "ru"]:
|
| 662 |
+
assert NotImplementedError(
|
| 663 |
+
"The dataset for {}-en is currently not fully supported.".format(language_pair[1])
|
| 664 |
+
)
|
| 665 |
+
# +++++++++++++++++++++
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
class Wmt(ABC, datasets.GeneratorBasedBuilder):
|
| 669 |
+
"""WMT translation dataset."""
|
| 670 |
+
|
| 671 |
+
def __init__(self, *args, **kwargs):
|
| 672 |
+
if type(self) == Wmt and "config" not in kwargs: # pylint: disable=unidiomatic-typecheck
|
| 673 |
+
raise ValueError(
|
| 674 |
+
"The raw `wmt_translate` can only be instantiated with the config "
|
| 675 |
+
"kwargs. You may want to use one of the `wmtYY_translate` "
|
| 676 |
+
"implementation instead to get the WMT dataset for a specific year."
|
| 677 |
+
)
|
| 678 |
+
super(Wmt, self).__init__(*args, **kwargs)
|
| 679 |
+
|
| 680 |
+
@property
|
| 681 |
+
@abstractmethod
|
| 682 |
+
def _subsets(self):
|
| 683 |
+
"""Subsets that make up each split of the dataset."""
|
| 684 |
+
raise NotImplementedError("This is a abstract method")
|
| 685 |
+
|
| 686 |
+
@property
|
| 687 |
+
def subsets(self):
|
| 688 |
+
"""Subsets that make up each split of the dataset for the language pair."""
|
| 689 |
+
source, target = self.config.language_pair
|
| 690 |
+
filtered_subsets = {}
|
| 691 |
+
for split, ss_names in self._subsets.items():
|
| 692 |
+
filtered_subsets[split] = []
|
| 693 |
+
for ss_name in ss_names:
|
| 694 |
+
dataset = DATASET_MAP[ss_name]
|
| 695 |
+
if dataset.target != target or source not in dataset.sources:
|
| 696 |
+
logging.info("Skipping sub-dataset that does not include language pair: %s", ss_name)
|
| 697 |
+
else:
|
| 698 |
+
filtered_subsets[split].append(ss_name)
|
| 699 |
+
logging.info("Using sub-datasets: %s", filtered_subsets)
|
| 700 |
+
return filtered_subsets
|
| 701 |
+
|
| 702 |
+
def _info(self):
|
| 703 |
+
src, target = self.config.language_pair
|
| 704 |
+
return datasets.DatasetInfo(
|
| 705 |
+
description=_DESCRIPTION,
|
| 706 |
+
features=datasets.Features(
|
| 707 |
+
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
| 708 |
+
),
|
| 709 |
+
supervised_keys=(src, target),
|
| 710 |
+
homepage=self.config.url,
|
| 711 |
+
citation=self.config.citation,
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
def _vocab_text_gen(self, split_subsets, extraction_map, language):
|
| 715 |
+
for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False):
|
| 716 |
+
yield ex[language]
|
| 717 |
+
|
| 718 |
+
def _split_generators(self, dl_manager):
|
| 719 |
+
source, _ = self.config.language_pair
|
| 720 |
+
manual_paths_dict = {}
|
| 721 |
+
urls_to_download = {}
|
| 722 |
+
for ss_name in itertools.chain.from_iterable(self.subsets.values()):
|
| 723 |
+
if ss_name == "czeng_17":
|
| 724 |
+
# CzEng1.7 is CzEng1.6 with some blocks filtered out. We must download
|
| 725 |
+
# the filtering script so we can parse out which blocks need to be
|
| 726 |
+
# removed.
|
| 727 |
+
urls_to_download[_CZENG17_FILTER.name] = _CZENG17_FILTER.get_url(source)
|
| 728 |
+
|
| 729 |
+
# get dataset
|
| 730 |
+
dataset = DATASET_MAP[ss_name]
|
| 731 |
+
if dataset.get_manual_dl_files(source):
|
| 732 |
+
# TODO(PVP): following two lines skip configs that are incomplete for now
|
| 733 |
+
# +++++++++++++++++++++
|
| 734 |
+
logging.info("Skipping {} for now. Incomplete dataset for {}".format(dataset.name, self.config.name))
|
| 735 |
+
continue
|
| 736 |
+
# +++++++++++++++++++++
|
| 737 |
+
|
| 738 |
+
manual_dl_files = dataset.get_manual_dl_files(source)
|
| 739 |
+
manual_paths = [
|
| 740 |
+
os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname)
|
| 741 |
+
for fname in manual_dl_files
|
| 742 |
+
]
|
| 743 |
+
assert all(
|
| 744 |
+
os.path.exists(path) for path in manual_paths
|
| 745 |
+
), "For {0}, you must manually download the following file(s) from {1} and place them in {2}: {3}".format(
|
| 746 |
+
dataset.name, dataset.get_url(source), dl_manager.manual_dir, ", ".join(manual_dl_files)
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
# set manual path for correct subset
|
| 750 |
+
manual_paths_dict[ss_name] = manual_paths
|
| 751 |
+
else:
|
| 752 |
+
urls_to_download[ss_name] = dataset.get_url(source)
|
| 753 |
+
|
| 754 |
+
# Download and extract files from URLs.
|
| 755 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 756 |
+
# Extract manually downloaded files.
|
| 757 |
+
manual_files = dl_manager.extract(manual_paths_dict)
|
| 758 |
+
extraction_map = dict(downloaded_files, **manual_files)
|
| 759 |
+
|
| 760 |
+
for language in self.config.language_pair:
|
| 761 |
+
self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language)
|
| 762 |
+
|
| 763 |
+
return [
|
| 764 |
+
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
| 765 |
+
name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map}
|
| 766 |
+
)
|
| 767 |
+
for split, split_subsets in self.subsets.items()
|
| 768 |
+
]
|
| 769 |
+
|
| 770 |
+
def _generate_examples(self, split_subsets, extraction_map, with_translation=True):
|
| 771 |
+
"""Returns the examples in the raw (text) form."""
|
| 772 |
+
source, _ = self.config.language_pair
|
| 773 |
+
|
| 774 |
+
def _get_local_paths(dataset, extract_dirs):
|
| 775 |
+
rel_paths = dataset.get_path(source)
|
| 776 |
+
if len(extract_dirs) == 1:
|
| 777 |
+
extract_dirs = extract_dirs * len(rel_paths)
|
| 778 |
+
return [
|
| 779 |
+
os.path.join(ex_dir, rel_path) if rel_path else ex_dir
|
| 780 |
+
for ex_dir, rel_path in zip(extract_dirs, rel_paths)
|
| 781 |
+
]
|
| 782 |
+
|
| 783 |
+
for ss_name in split_subsets:
|
| 784 |
+
# TODO(PVP) remove following five lines when manual data works
|
| 785 |
+
# +++++++++++++++++++++
|
| 786 |
+
dataset = DATASET_MAP[ss_name]
|
| 787 |
+
source, _ = self.config.language_pair
|
| 788 |
+
if dataset.get_manual_dl_files(source):
|
| 789 |
+
logging.info("Skipping {} for now. Incomplete dataset for {}".format(dataset.name, self.config.name))
|
| 790 |
+
continue
|
| 791 |
+
# +++++++++++++++++++++
|
| 792 |
+
|
| 793 |
+
logging.info("Generating examples from: %s", ss_name)
|
| 794 |
+
dataset = DATASET_MAP[ss_name]
|
| 795 |
+
extract_dirs = extraction_map[ss_name]
|
| 796 |
+
files = _get_local_paths(dataset, extract_dirs)
|
| 797 |
+
|
| 798 |
+
if ss_name.startswith("czeng"):
|
| 799 |
+
if ss_name.endswith("16pre"):
|
| 800 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs"))
|
| 801 |
+
elif ss_name.endswith("17"):
|
| 802 |
+
filter_path = _get_local_paths(_CZENG17_FILTER, extraction_map[_CZENG17_FILTER.name])[0]
|
| 803 |
+
sub_generator = functools.partial(_parse_czeng, filter_path=filter_path)
|
| 804 |
+
else:
|
| 805 |
+
sub_generator = _parse_czeng
|
| 806 |
+
elif ss_name == "hindencorp_01":
|
| 807 |
+
sub_generator = _parse_hindencorp
|
| 808 |
+
elif len(files) == 2:
|
| 809 |
+
if ss_name.endswith("_frde"):
|
| 810 |
+
sub_generator = _parse_frde_bitext
|
| 811 |
+
else:
|
| 812 |
+
sub_generator = _parse_parallel_sentences
|
| 813 |
+
elif len(files) == 1:
|
| 814 |
+
fname = files[0]
|
| 815 |
+
# Note: Due to formatting used by `download_manager`, the file
|
| 816 |
+
# extension may not be at the end of the file path.
|
| 817 |
+
if ".tsv" in fname:
|
| 818 |
+
sub_generator = _parse_tsv
|
| 819 |
+
elif (
|
| 820 |
+
ss_name.startswith("newscommentary_v14")
|
| 821 |
+
or ss_name.startswith("europarl_v9")
|
| 822 |
+
or ss_name.startswith("wikititles_v1")
|
| 823 |
+
):
|
| 824 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair)
|
| 825 |
+
elif "tmx" in fname or ss_name.startswith("paracrawl_v3"):
|
| 826 |
+
sub_generator = _parse_tmx
|
| 827 |
+
elif ss_name.startswith("wikiheadlines"):
|
| 828 |
+
sub_generator = _parse_wikiheadlines
|
| 829 |
+
else:
|
| 830 |
+
raise ValueError("Unsupported file format: %s" % fname)
|
| 831 |
+
else:
|
| 832 |
+
raise ValueError("Invalid number of files: %d" % len(files))
|
| 833 |
+
|
| 834 |
+
for sub_key, ex in sub_generator(*files):
|
| 835 |
+
if not all(ex.values()):
|
| 836 |
+
continue
|
| 837 |
+
# TODO(adarob): Add subset feature.
|
| 838 |
+
# ex["subset"] = subset
|
| 839 |
+
key = "{}/{}".format(ss_name, sub_key)
|
| 840 |
+
if with_translation is True:
|
| 841 |
+
ex = {"translation": ex}
|
| 842 |
+
yield key, ex
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
def _parse_parallel_sentences(f1, f2):
|
| 846 |
+
"""Returns examples from parallel SGML or text files, which may be gzipped."""
|
| 847 |
+
|
| 848 |
+
def _parse_text(path):
|
| 849 |
+
"""Returns the sentences from a single text file, which may be gzipped."""
|
| 850 |
+
split_path = path.split(".")
|
| 851 |
+
|
| 852 |
+
if split_path[-1] == "gz":
|
| 853 |
+
lang = split_path[-2]
|
| 854 |
+
with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g:
|
| 855 |
+
return g.read().decode("utf-8").split("\n"), lang
|
| 856 |
+
|
| 857 |
+
if split_path[-1] == "txt":
|
| 858 |
+
# CWMT
|
| 859 |
+
lang = split_path[-2].split("_")[-1]
|
| 860 |
+
lang = "zh" if lang in ("ch", "cn") else lang
|
| 861 |
+
else:
|
| 862 |
+
lang = split_path[-1]
|
| 863 |
+
with open(path, "rb") as f:
|
| 864 |
+
return f.read().decode("utf-8").split("\n"), lang
|
| 865 |
+
|
| 866 |
+
def _parse_sgm(path):
|
| 867 |
+
"""Returns sentences from a single SGML file."""
|
| 868 |
+
lang = path.split(".")[-2]
|
| 869 |
+
sentences = []
|
| 870 |
+
# Note: We can't use the XML parser since some of the files are badly
|
| 871 |
+
# formatted.
|
| 872 |
+
seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>")
|
| 873 |
+
with open(path, encoding="utf-8") as f:
|
| 874 |
+
for line in f:
|
| 875 |
+
seg_match = re.match(seg_re, line)
|
| 876 |
+
if seg_match:
|
| 877 |
+
assert len(seg_match.groups()) == 1
|
| 878 |
+
sentences.append(seg_match.groups()[0])
|
| 879 |
+
return sentences, lang
|
| 880 |
+
|
| 881 |
+
parse_file = _parse_sgm if f1.endswith(".sgm") else _parse_text
|
| 882 |
+
|
| 883 |
+
# Some datasets (e.g., CWMT) contain multiple parallel files specified with
|
| 884 |
+
# a wildcard. We sort both sets to align them and parse them one by one.
|
| 885 |
+
f1_files = sorted(glob.glob(f1))
|
| 886 |
+
f2_files = sorted(glob.glob(f2))
|
| 887 |
+
|
| 888 |
+
assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2)
|
| 889 |
+
assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % (
|
| 890 |
+
len(f1_files),
|
| 891 |
+
len(f2_files),
|
| 892 |
+
f1,
|
| 893 |
+
f2,
|
| 894 |
+
)
|
| 895 |
+
|
| 896 |
+
for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))):
|
| 897 |
+
l1_sentences, l1 = parse_file(f1_i)
|
| 898 |
+
l2_sentences, l2 = parse_file(f2_i)
|
| 899 |
+
|
| 900 |
+
assert len(l1_sentences) == len(l2_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
|
| 901 |
+
len(l1_sentences),
|
| 902 |
+
len(l2_sentences),
|
| 903 |
+
f1_i,
|
| 904 |
+
f2_i,
|
| 905 |
+
)
|
| 906 |
+
|
| 907 |
+
for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)):
|
| 908 |
+
key = "{}/{}".format(f_id, line_id)
|
| 909 |
+
yield key, {l1: s1, l2: s2}
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
def _parse_frde_bitext(fr_path, de_path):
|
| 913 |
+
with open(fr_path, encoding="utf-8") as f:
|
| 914 |
+
fr_sentences = f.read().split("\n")
|
| 915 |
+
with open(de_path, encoding="utf-8") as f:
|
| 916 |
+
de_sentences = f.read().split("\n")
|
| 917 |
+
assert len(fr_sentences) == len(de_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
|
| 918 |
+
len(fr_sentences),
|
| 919 |
+
len(de_sentences),
|
| 920 |
+
fr_path,
|
| 921 |
+
de_path,
|
| 922 |
+
)
|
| 923 |
+
for line_id, (s1, s2) in enumerate(zip(fr_sentences, de_sentences)):
|
| 924 |
+
yield line_id, {"fr": s1, "de": s2}
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
def _parse_tmx(path):
|
| 928 |
+
"""Generates examples from TMX file."""
|
| 929 |
+
|
| 930 |
+
def _get_tuv_lang(tuv):
|
| 931 |
+
for k, v in tuv.items():
|
| 932 |
+
if k.endswith("}lang"):
|
| 933 |
+
return v
|
| 934 |
+
raise AssertionError("Language not found in `tuv` attributes.")
|
| 935 |
+
|
| 936 |
+
def _get_tuv_seg(tuv):
|
| 937 |
+
segs = tuv.findall("seg")
|
| 938 |
+
assert len(segs) == 1, "Invalid number of segments: %d" % len(segs)
|
| 939 |
+
return segs[0].text
|
| 940 |
+
|
| 941 |
+
with open(path, "rb") as f:
|
| 942 |
+
if six.PY3:
|
| 943 |
+
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
| 944 |
+
utf_f = codecs.getreader("utf-8")(f)
|
| 945 |
+
else:
|
| 946 |
+
utf_f = f
|
| 947 |
+
for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)):
|
| 948 |
+
if elem.tag == "tu":
|
| 949 |
+
yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")}
|
| 950 |
+
elem.clear()
|
| 951 |
+
|
| 952 |
+
|
| 953 |
+
def _parse_tsv(path, language_pair=None):
|
| 954 |
+
"""Generates examples from TSV file."""
|
| 955 |
+
if language_pair is None:
|
| 956 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", path)
|
| 957 |
+
assert lang_match is not None, "Invalid TSV filename: %s" % path
|
| 958 |
+
l1, l2 = lang_match.groups()
|
| 959 |
+
else:
|
| 960 |
+
l1, l2 = language_pair
|
| 961 |
+
with open(path, encoding="utf-8") as f:
|
| 962 |
+
for j, line in enumerate(f):
|
| 963 |
+
cols = line.split("\t")
|
| 964 |
+
if len(cols) != 2:
|
| 965 |
+
logging.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols))
|
| 966 |
+
continue
|
| 967 |
+
s1, s2 = cols
|
| 968 |
+
yield j, {l1: s1.strip(), l2: s2.strip()}
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
def _parse_wikiheadlines(path):
|
| 972 |
+
"""Generates examples from Wikiheadlines dataset file."""
|
| 973 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path)
|
| 974 |
+
assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path
|
| 975 |
+
l1, l2 = lang_match.groups()
|
| 976 |
+
with open(path, encoding="utf-8") as f:
|
| 977 |
+
for line_id, line in enumerate(f):
|
| 978 |
+
s1, s2 = line.split("|||")
|
| 979 |
+
yield line_id, {l1: s1.strip(), l2: s2.strip()}
|
| 980 |
+
|
| 981 |
+
|
| 982 |
+
def _parse_czeng(*paths, **kwargs):
|
| 983 |
+
"""Generates examples from CzEng v1.6, with optional filtering for v1.7."""
|
| 984 |
+
filter_path = kwargs.get("filter_path", None)
|
| 985 |
+
if filter_path:
|
| 986 |
+
re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]")
|
| 987 |
+
with open(filter_path, encoding="utf-8") as f:
|
| 988 |
+
bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()}
|
| 989 |
+
logging.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks))
|
| 990 |
+
|
| 991 |
+
for path in paths:
|
| 992 |
+
for gz_path in sorted(glob.glob(path)):
|
| 993 |
+
with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f:
|
| 994 |
+
filename = os.path.basename(gz_path)
|
| 995 |
+
for line_id, line in enumerate(f):
|
| 996 |
+
line = line.decode("utf-8") # required for py3
|
| 997 |
+
if not line.strip():
|
| 998 |
+
continue
|
| 999 |
+
id_, unused_score, cs, en = line.split("\t")
|
| 1000 |
+
if filter_path:
|
| 1001 |
+
block_match = re.match(re_block, id_)
|
| 1002 |
+
if block_match and block_match.groups()[0] in bad_blocks:
|
| 1003 |
+
continue
|
| 1004 |
+
sub_key = "{}/{}".format(filename, line_id)
|
| 1005 |
+
yield sub_key, {
|
| 1006 |
+
"cs": cs.strip(),
|
| 1007 |
+
"en": en.strip(),
|
| 1008 |
+
}
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
def _parse_hindencorp(path):
|
| 1012 |
+
with open(path, encoding="utf-8") as f:
|
| 1013 |
+
for line_id, line in enumerate(f):
|
| 1014 |
+
split_line = line.split("\t")
|
| 1015 |
+
if len(split_line) != 5:
|
| 1016 |
+
logging.warning("Skipping invalid HindEnCorp line: %s", line)
|
| 1017 |
+
continue
|
| 1018 |
+
yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}}
|