File size: 4,875 Bytes
81cd165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0aba9
 
 
 
81cd165
 
 
 
 
20f5b13
 
 
 
 
 
 
 
 
 
 
 
 
 
81cd165
20f5b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
dataset_info:
  features:
  - name: id
    dtype: int64
  - name: source_text
    dtype: string
  - name: target_text
    dtype: string
  - name: proficiency
    dtype: int64
  - name: source_language_name
    dtype: string
  - name: source_language_code
    dtype: string
  - name: target_language_name
    dtype: string
  - name: target_language_code
    dtype: string
  - name: created_at
    dtype: string
  - name: created_by
    dtype: string
  splits:
  - name: train
    num_bytes: 5130209
    num_examples: 12346
  download_size: 2947702
  dataset_size: 5130209
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
language:
- ban
- min
- ace
- bug
- bjn
- jv
- su
- nij
- sas
- mad
pretty_name: Indonesiaku Contributions
size_categories:
- 1M<n<10M
---

# Indonesiaku Contributions Dataset

## Dataset Description

The **Indonesiaku Contributions** dataset contains user-submitted translations collected via the [Indonesiaku platform](http://indonesiaku.com/data). It aims to support language learning, translation research, and the development of multilingual models by providing a diverse set of source-target text pairs across various languages, enriched with metadata such as proficiency levels and contributor information.

This dataset is sourced from the Indonesiaku translation database, where users contribute translations as part of a collaborative effort to preserve and share linguistic knowledge. For more details on the platform, visit [http://indonesiaku.com/data](http://indonesiaku.com/data).

### Key Features
- **Multilingual**: Includes translations between multiple language pairs.
- **Crowdsourced**: Contributions from a community of language learners and native speakers.
- **Rich Metadata**: Contains proficiency ratings, language codes, and contributor usernames.

## Dataset Structure

The dataset is provided as a single split (`train`) in CSV format with the following columns:

| Column                | Description                                      | Type       |
|-----------------------|--------------------------------------------------|------------|
| `id`                  | Unique identifier for the translation            | Integer    |
| `source_text`         | Original text in the source language             | String     |
| `target_text`         | Translated text in the target language           | String     |
| `proficiency`         | Contributor’s proficiency level (0-3)            | Integer    |
| `source_language_name`| Name of the source language                      | String     |
| `source_language_code`| ISO code of the source language                  | String     |
| `target_language_name`| Name of the target language                      | String     |
| `target_language_code`| ISO code of the target language                  | String     |
| `created_at`          | Timestamp of translation submission              | String     |
| `created_by`          | Username of the contributor (nullable)           | String     |

- **Proficiency Levels**:
  - 0: Not Proficient
  - 1: Elementary
  - 2: Limited Working
  - 3: Native/Bilingual

## Usage

### Loading the Dataset
You can load the dataset using the Hugging Face `datasets` library:

```python
from datasets import load_dataset

dataset = load_dataset("williamhtan/indonesiaku-contrib")
print(dataset["train"][0])  # Access the first row
```

### Example Applications
- **Machine Translation**: Train or fine-tune translation models.
- **Language Learning**: Analyze proficiency impacts on translation quality.
- **Linguistic Research**: Study language pair distributions and translation patterns.

## Data Collection

The data is collected from the [Indonesiaku translation database](http://indonesiaku.com/data), where users submit translations as part of an open contribution process. The dataset is periodically updated to reflect new contributions. This version (1.0.0) was exported on [insert date, e.g., February 23, 2025].

## Licensing

This dataset is released under the [MIT License](https://opensource.org/licenses/MIT).

## Citation

If you use this dataset in your research or projects, please cite it as:

```
@dataset{williamhtan_indonesiaku_contrib,
  author = {William Tan and Indonesiaku Contributors},
  title = {Indonesiaku Contributions Dataset},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/williamhtan/indonesiaku-contrib}
}
```

## Acknowledgments

- Thanks to the Indonesiaku community for their contributions.
- Built with support from [Supabase](https://supabase.com) for database hosting and [Hugging Face](https://huggingface.co) for dataset hosting.

## Contact

For questions or contributions, visit [http://indonesiaku.com/data](http://indonesiaku.com/data) or contact the dataset maintainer at [insert contact info if desired].