File size: 2,702 Bytes
c147265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
893beeb
c147265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0ab91
c147265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4b11fd
22380e7
c147265
f4d03d5
c147265
f4d03d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datasets
import json

_CITATION = """

"""

_DESCRIPTION = """
"""

_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "test": "https://raw.githubusercontent.com/wicsaax/strategy-qa/main/strategyQA_train.json",
}


class strategyQA(datasets.GeneratorBasedBuilder):


    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="strategyQA", version=VERSION, description="Chinese dataset."
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "qid": datasets.Value("string"),
                "term": datasets.Value("string"),
                "description": datasets.Value("string"),
                "question": datasets.Value("string"),
                "answer": datasets.Value("bool"),
                "facts": datasets.features.Sequence(datasets.Value("string")),
                "decomposition": datasets.features.Sequence(datasets.Value("string"))
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = {
            "test": _URLS["test"]
        }
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": data_dir["test"], "split": "test"},
            )
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):

        with open(filepath,'r',encoding="utf-8") as f:
            print(filepath)
            data = json.loads(f.read())
            for idx,single_data in enumerate(data):
                
                yield f"{idx}", single_data