Datasets:
Tasks:
Text Classification
Sub-tasks:
intent-classification
Languages:
Korean
Size:
10K<n<100K
ArXiv:
License:
File size: 5,513 Bytes
fd8b0e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- ko
licenses:
- cc-by-sa-4-0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
---
# Dataset Card for Structured Argument Extraction for Korean
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage: [Structured Argument Extraction for Korean](https://github.com/warnikchow/sae4k)**
- **Repository: [Structured Argument Extraction for Korean](https://github.com/warnikchow/sae4k)**
- **Paper: [Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives](https://arxiv.org/abs/1912.00342)**
- **Point of Contact: [Won Ik Cho]([email protected])**
### Dataset Summary
The Structured Argument Extraction for Korean dataset is a set of question-argument and command-argument pairs with their respective question type label and negativeness label. Often times, agents like Alexa or Siri, encounter conversations without a clear objective from the user. The goal of this dataset is to extract the intent argument of a given utterance pair without a clear directive. This may yield a more robust agent capable of parsing more non-canonical forms of speech.
### Supported Tasks and Leaderboards
* `intent_classification`: The dataset can be trained with a Transformer like [BERT](https://huggingface.co/bert-base-uncased) to classify the intent argument or a question/command pair in Korean, and it's performance can be measured by it's BERTScore.
### Languages
The text in the dataset is in Korean and the associated is BCP-47 code is `ko-KR`.
## Dataset Structure
### Data Instances
An example data instance contains a question or command pair and its label:
```
{
"intent_pair1": "내일 오후 다섯시 조별과제 일정 추가해줘"
"intent_pair2": "내일 오후 다섯시 조별과제 일정 추가하기"
"label": 4
}
```
### Data Fields
* `intent_pair1`: a question/command pair
* `intent_pair2`: a corresponding question/command pair
* `label`: determines the intent argument of the pair and can be one of `yes/no` (0), `alternative` (1), `wh- questions` (2), `prohibitions` (3), `requirements` (4) and `strong requirements` (5)
### Data Splits
The corpus contains 30,837 examples.
## Dataset Creation
### Curation Rationale
The Structured Argument Extraction for Korean dataset was curated to help train models extract intent arguments from utterances without a clear objective or when the user uses non-canonical forms of speech. This is especially helpful in Korean because in English, the `Who, what, where, when and why` usually comes in the beginning, but this isn't necessarily the case in the Korean language. So for low-resource languages, this lack of data can be a bottleneck for comprehension performance.
### Source Data
#### Initial Data Collection and Normalization
The corpus was taken from the one constructed by [Cho et al.](https://arxiv.org/abs/1811.04231), a Korean single utterance corpus for identifying directives/non-directives that contains a wide variety of non-canonical directives.
#### Who are the source language producers?
Korean speakers are the source language producers.
### Annotations
#### Annotation process
Utterances were categorized as question or command arguments and then further classified according to their intent argument.
#### Who are the annotators?
The annotation was done by three Korean natives with a background in computational linguistics.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset is curated by Won Ik Cho, Young Ki Moon, Sangwhan Moon, Seok Min Kim and Nam Soo Kim.
### Licensing Information
The dataset is licensed under the CC BY-SA-4.0.
### Citation Information
```
@article{cho2019machines,
title={Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives},
author={Cho, Won Ik and Moon, Young Ki and Moon, Sangwhan and Kim, Seok Min and Kim, Nam Soo},
journal={arXiv preprint arXiv:1912.00342},
year={2019}
}
```
### Contributions
Thanks to [@stevhliu](https://github.com/stevhliu) for adding this dataset. |