Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
f1e318c
·
1 Parent(s): c5cbb40

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,182 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language_creators:
5
- - expert-generated
6
- language:
7
- - ko
8
- license:
9
- - cc-by-4.0
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 10K<n<100K
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - text-classification
18
- task_ids:
19
- - intent-classification
20
- paperswithcode_id: null
21
- pretty_name: 3i4K
22
- dataset_info:
23
- features:
24
- - name: label
25
- dtype:
26
- class_label:
27
- names:
28
- 0: fragment
29
- 1: statement
30
- 2: question
31
- 3: command
32
- 4: rhetorical question
33
- 5: rhetorical command
34
- 6: intonation-dependent utterance
35
- - name: text
36
- dtype: string
37
- splits:
38
- - name: train
39
- num_bytes: 3102158
40
- num_examples: 55134
41
- - name: test
42
- num_bytes: 344028
43
- num_examples: 6121
44
- download_size: 2956114
45
- dataset_size: 3446186
46
- ---
47
-
48
- # Dataset Card for 3i4K
49
-
50
- ## Table of Contents
51
- - [Dataset Description](#dataset-description)
52
- - [Dataset Summary](#dataset-summary)
53
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
54
- - [Languages](#languages)
55
- - [Dataset Structure](#dataset-structure)
56
- - [Data Instances](#data-instances)
57
- - [Data Fields](#data-fields)
58
- - [Data Splits](#data-splits)
59
- - [Dataset Creation](#dataset-creation)
60
- - [Curation Rationale](#curation-rationale)
61
- - [Source Data](#source-data)
62
- - [Annotations](#annotations)
63
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
64
- - [Considerations for Using the Data](#considerations-for-using-the-data)
65
- - [Social Impact of Dataset](#social-impact-of-dataset)
66
- - [Discussion of Biases](#discussion-of-biases)
67
- - [Other Known Limitations](#other-known-limitations)
68
- - [Additional Information](#additional-information)
69
- - [Dataset Curators](#dataset-curators)
70
- - [Licensing Information](#licensing-information)
71
- - [Citation Information](#citation-information)
72
- - [Contributions](#contributions)
73
-
74
- ## Dataset Description
75
-
76
- - **Homepage:** [3i4K](https://github.com/warnikchow/3i4k)
77
- - **Repository:** [3i4K](https://github.com/warnikchow/3i4k)
78
- - **Paper:** [Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency](https://arxiv.org/abs/1811.04231)
79
- - **Point of Contact:** [Won Ik Cho]([email protected])
80
-
81
- ### Dataset Summary
82
-
83
- The 3i4K dataset is a set of frequently used Korean words (corpus provided by the Seoul National University Speech Language Processing Lab) and manually created questions/commands containing short utterances. The goal is to identify the speaker intention of a spoken utterance based on its transcript, and whether in some cases, requires using auxiliary acoustic features. The classification system decides whether the utterance is a fragment, statement, question, command, rhetorical question, rhetorical command, or an intonation-dependent utterance. This is important because in head-final languages like Korean, the level of the intonation plays a significant role in identifying the speaker's intention.
84
-
85
- ### Supported Tasks and Leaderboards
86
-
87
- * `intent-classification`: The dataset can be trained with a CNN or BiLISTM-Att to identify the intent of a spoken utterance in Korean and the performance can be measured by its F1 score.
88
-
89
- ### Languages
90
-
91
- The text in the dataset is in Korean and the associated is BCP-47 code is `ko-KR`.
92
-
93
- ## Dataset Structure
94
-
95
- ### Data Instances
96
-
97
- An example data instance contains a short utterance and it's label:
98
-
99
- ```
100
- {
101
- "label": 3,
102
- "text": "선수잖아 이 케이스 저 케이스 많을 거 아냐 선배라고 뭐 하나 인생에 도움도 안주는데 내가 이렇게 진지하게 나올 때 제대로 한번 조언 좀 해줘보지"
103
- }
104
- ```
105
-
106
- ### Data Fields
107
-
108
- * `label`: determines the intention of the utterance and can be one of `fragment` (0), `statement` (1), `question` (2), `command` (3), `rhetorical question` (4), `rhetorical command` (5) and `intonation-depedent utterance` (6).
109
- * `text`: the text in Korean about common topics like housework, weather, transportation, etc.
110
-
111
- ### Data Splits
112
-
113
- The data is split into a training set comrpised of 55134 examples and a test set of 6121 examples.
114
-
115
- ## Dataset Creation
116
-
117
- ### Curation Rationale
118
-
119
- For head-final languages like Korean, intonation can be a determining factor in identifying the speaker's intention. The purpose of this dataset is to to determine whether an utterance is a fragment, statement, question, command, or a rhetorical question/command using the intonation-depedency from the head-finality. This is expected to improve language understanding of spoken Korean utterances and can be beneficial for speech-to-text applications.
120
-
121
- ### Source Data
122
-
123
- #### Initial Data Collection and Normalization
124
-
125
- The corpus was provided by Seoul National University Speech Language Processing Lab, a set of frequently used words from the National Institute of Korean Language and manually created commands and questions. The utterances cover topics like weather, transportation and stocks. 20k lines were randomly selected.
126
-
127
- #### Who are the source language producers?
128
-
129
- Korean speakers produced the commands and questions.
130
-
131
- ### Annotations
132
-
133
- #### Annotation process
134
-
135
- Utterances were classified into seven categories. They were provided clear instructions on the annotation guidelines (see [here](https://docs.google.com/document/d/1-dPL5MfsxLbWs7vfwczTKgBq_1DX9u1wxOgOPn1tOss/edit#) for the guidelines) and the resulting inter-annotator agreement was 0.85 and the final decision was done by majority voting.
136
-
137
- #### Who are the annotators?
138
-
139
- The annotation was completed by three Seoul Korean L1 speakers.
140
-
141
- ### Personal and Sensitive Information
142
-
143
- [More Information Needed]
144
-
145
- ## Considerations for Using the Data
146
-
147
- ### Social Impact of Dataset
148
-
149
- [More Information Needed]
150
-
151
- ### Discussion of Biases
152
-
153
- [More Information Needed]
154
-
155
- ### Other Known Limitations
156
-
157
- [More Information Needed]
158
-
159
- ## Additional Information
160
-
161
- ### Dataset Curators
162
-
163
- The dataset is curated by Won Ik Cho, Hyeon Seung Lee, Ji Won Yoon, Seok Min Kim and Nam Soo Kim.
164
-
165
- ### Licensing Information
166
-
167
- The dataset is licensed under the CC BY-SA-4.0.
168
-
169
- ### Citation Information
170
-
171
- ```
172
- @article{cho2018speech,
173
- title={Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency},
174
- author={Cho, Won Ik and Lee, Hyeon Seung and Yoon, Ji Won and Kim, Seok Min and Kim, Nam Soo},
175
- journal={arXiv preprint arXiv:1811.04231},
176
- year={2018}
177
- }
178
- ```
179
-
180
- ### Contributions
181
-
182
- Thanks to [@stevhliu](https://github.com/stevhliu) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "This dataset is designed to identify speaker intention based on real-life spoken utterance in Korean into one of\n7 categories: fragment, description, question, command, rhetorical question, rhetorical command, utterances.\n", "citation": "@article{cho2018speech,\n title={Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency},\n author={Cho, Won Ik and Lee, Hyeon Seung and Yoon, Ji Won and Kim, Seok Min and Kim, Nam Soo},\n journal={arXiv preprint arXiv:1811.04231},\n year={2018}\n}\n", "homepage": "https://github.com/warnikchow/3i4k", "license": "CC BY-SA-4.0", "features": {"label": {"num_classes": 7, "names": ["fragment", "statement", "question", "command", "rhetorical question", "rhetorical command", "intonation-dependent utterance"], "names_file": null, "id": null, "_type": "ClassLabel"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["command", "fragment", "intonation-dependent utterance", "question", "rhetorical command", "rhetorical question", "statement"]}], "builder_name": "kor_3i4k", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3102158, "num_examples": 55134, "dataset_name": "kor_3i4k"}, "test": {"name": "test", "num_bytes": 344028, "num_examples": 6121, "dataset_name": "kor_3i4k"}}, "download_checksums": {"https://raw.githubusercontent.com/warnikchow/3i4k/master/data/train_val_test/fci_train_val.txt": {"num_bytes": 2661060, "checksum": "646f450b84992c6df806ea72aa35374db7ec30d7739920b86dfa878e73b69079"}, "https://raw.githubusercontent.com/warnikchow/3i4k/master/data/train_val_test/fci_test.txt": {"num_bytes": 295054, "checksum": "d74c5b376c7d231bd4d5a94de855e47b6e70c96abeeaaf75cffbdb8506a87ff2"}}, "download_size": 2956114, "post_processing_size": null, "dataset_size": 3446186, "size_in_bytes": 6402300}}
 
 
default/kor_3i4k-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:088d5aff8ef99c7994720d8432ea637ba9f24697fbd3f7031239bef751114628
3
+ size 200393
default/kor_3i4k-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fb01ae32df2a5810016a81c2b5b7c8764be082e3c3a9855a04d569007ddf2d7
3
+ size 1773928
kor_3i4k.py DELETED
@@ -1,95 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """3i4K: Intonation-aided intention identification for Korean dataset"""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
- from datasets.tasks import TextClassification
22
-
23
-
24
- _CITATION = """\
25
- @article{cho2018speech,
26
- title={Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency},
27
- author={Cho, Won Ik and Lee, Hyeon Seung and Yoon, Ji Won and Kim, Seok Min and Kim, Nam Soo},
28
- journal={arXiv preprint arXiv:1811.04231},
29
- year={2018}
30
- }
31
- """
32
-
33
- _DESCRIPTION = """\
34
- This dataset is designed to identify speaker intention based on real-life spoken utterance in Korean into one of
35
- 7 categories: fragment, description, question, command, rhetorical question, rhetorical command, utterances.
36
- """
37
-
38
- _HOMEPAGE = "https://github.com/warnikchow/3i4k"
39
-
40
- _LICENSE = "CC BY-SA-4.0"
41
-
42
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/warnikchow/3i4k/master/data/train_val_test/fci_train_val.txt"
43
- _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/warnikchow/3i4k/master/data/train_val_test/fci_test.txt"
44
-
45
-
46
- class Kor_3i4k(datasets.GeneratorBasedBuilder):
47
- """Intonation-aided intention identification for Korean"""
48
-
49
- VERSION = datasets.Version("1.1.0")
50
-
51
- def _info(self):
52
-
53
- return datasets.DatasetInfo(
54
- description=_DESCRIPTION,
55
- features=datasets.Features(
56
- {
57
- "label": datasets.features.ClassLabel(
58
- names=[
59
- "fragment",
60
- "statement",
61
- "question",
62
- "command",
63
- "rhetorical question",
64
- "rhetorical command",
65
- "intonation-dependent utterance",
66
- ]
67
- ),
68
- "text": datasets.Value("string"),
69
- }
70
- ),
71
- supervised_keys=None,
72
- homepage=_HOMEPAGE,
73
- license=_LICENSE,
74
- citation=_CITATION,
75
- task_templates=[TextClassification(text_column="text", label_column="label")],
76
- )
77
-
78
- def _split_generators(self, dl_manager):
79
- """Returns SplitGenerators"""
80
-
81
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
82
- test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
83
- return [
84
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
85
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
86
- ]
87
-
88
- def _generate_examples(self, filepath):
89
- """Generates 3i4K examples"""
90
-
91
- with open(filepath, encoding="utf-8") as csv_file:
92
- data = csv.reader(csv_file, delimiter="\t")
93
- for id_, row in enumerate(data):
94
- label, text = row
95
- yield id_, {"label": int(label), "text": text}