File size: 6,246 Bytes
e68fc33 5f6be3a e68fc33 5f6be3a e68fc33 5f6be3a e68fc33 5f6be3a e68fc33 5f6be3a e68fc33 5f6be3a e68fc33 5f6be3a e68fc33 de9c6fe 5f6be3a de9c6fe 5f6be3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
language:
- en
license: mit
task_categories:
- visual-question-answering
- image-text-to-text
tags:
- retrieval-augmented-generation
- multimodal
- benchmark
---
# M2RAG: Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts
Click the links below to view our paper and Github project.
<a href='https://arxiv.org/abs/2502.17297'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a><a href='https://github.com/NEUIR/M2RAG'><img src="https://img.shields.io/badge/Github-M2RAG-blue?logo=Github"></a>
If you find this work useful, please cite our paper and give us a shining star 🌟 in Github
```bibtex
@misc{liu2025benchmarkingretrievalaugmentedgenerationmultimodal,
title={Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts},
author={Zhenghao Liu and Xingsheng Zhu and Tianshuo Zhou and Xinyi Zhang and Xiaoyuan Yi and Yukun Yan and Yu Gu and Ge Yu and Maosong Sun},
year={2025},
eprint={2502.17297},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2502.17297},
}
```
## 🎃 Overview
The **M²RAG** benchmark evaluates Multi-modal Large Language Models (MLLMs) by using multi-modal retrieved documents to answer questions. It includes four tasks: image captioning, multi-modal QA, fact verification, and image reranking, assessing MLLMs’ ability to leverage knowledge from multi-modal contexts.
The **Multi-Modal Retrieval Augmented Instruction Tuning (MM-RAIT)** method further adapts MLLMs to multi-modal in-context learning, enhancing their effectiveness in utilizing knowledge from these retrieval documents.
<p align="center">
<img align="middle" src="https://raw.githubusercontent.com/NEUIR/M2RAG/main/assets/m2rag.png" style="width: 600px;" alt="m2rag"/>
</p>
## 🎃 Data Storage Structure
The data storage structure of M2RAG is as follows:
```
M2RAG/
├──fact_verify/
├──image_cap/
├──image_rerank/
├──mmqa/
├──imgs.lineidx.new
└──imgs.tsv
```
❗️Note:
- If you encounter difficulties when downloading the images directly, please download and use the pre-packaged image file `M2RAG_Images.zip` instead.
- To obtain the `imgs.tsv`, you can follow the instructions in the [WebQA](https://github.com/WebQnA/WebQA?tab=readme-ov-file#download-data) project. Specifically, you need to first download all the data from the folder [WebQA_imgs_7z_chunks](https://drive.google.com/drive/folders/19ApkbD5w0I5sV1IeQ9EofJRyAjKnA7tb), and then run the command `7z x imgs.7z.001` to unzip and merge all chunks to get the imgs.tsv.
## 🎃 Sample Usage
### 🌵 Requirements
To use this dataset and reproduce results, install the following packages using Pip or Conda:
```
Python==3.10
Pytorch
transformers==4.44.2 (4.46.1 for finetune qwen2-vl)
clip
faiss==1.9.0
tqdm
numpy
base64
diffusers
flash-attn
xformers
llamafactory
accelerate
nltk
rouge_score
sklearn
```
We provide the version file `requirements.txt` of all our used packages in the GitHub repository for environment configuration.
You will also need pretrained models: [MiniCPM-V 2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6), [Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct), and [VISTA](https://huggingface.co/BAAI/bge-visualized) (used for multi-modal document retrieval).
### 🌵 Reproduce MM-RAIT
#### Download Code & Dataset
First, clone the project from GitHub:
```bash
git clone https://github.com/NEUIR/M2RAG
cd M2RAG
```
Second, you can either directly download and use [M2RAG](https://huggingface.co/datasets/whalezzz/M2RAG), or follow the instructions in 'data/data_preprocess' to build it step by step. Please place the downloaded dataset in the `data` folder as shown in the data structure above.
(❗️Note: For the ```imgs.tsv```, you need to download the data from [this link](https://drive.google.com/drive/folders/1ApfD-RzvJ79b-sLeBx1OaiPNUYauZdAZ?usp=sharing) and run ```7z x imgs.7z.001```).
```
data/
└──m2rag/
├──fact_verify/
├──image_cap/
├──image_rerank/
├──mmqa/
├──imgs.lineidx.new
└──imgs.tsv
```
#### Inference for Zero-Shot setting
Once the dataset and vanilla models are ready, you can follow the instructions below to reproduce our zero-shot results.
* Step 1: Encode the queries from the test set and the multi-modal corpus for each task.
```bash
cd script
bash get_embed_test.sh
```
* Step 2: Retrieve the topN most relevant multi-modal documents for each query.
```bash
bash retrieval_test.sh
```
* Step 3: Use the retrieved documents for vanilla RAG inference.
```bash
bash inference_cpmv.sh # or bash inference_qwen.sh
```
For Image Reranking task, please use:
```bash
bash compute_ppl_minicpmv.sh # or bash compute_ppl_qwen2vl.sh
```
#### Train MM-RAIT
**Using the MiniCPM-V 2.6 models as an example, I will show you how to reproduce the results in this paper. The same is true for the Qwen2-VL. Also, we provide fine-tuned checkpoints. You can skip this step and proceed directly to inference.**
* First step: Prepare the training data.
```bash
bash get_embed_train.sh
bash retrieval_train.sh
cd ../data/
bash finetune/construct_finetune_data.sh
```
* Second step: Fine-tune the MiniCPM-V model using LoRA.
```bash
cd ../script
bash finetune_cpmv.sh
```
* Final step: Use the fine-tuned model for inference.
```bash
bash inference_cpmv.sh
```
For Image Reranking task, please use:
```bash
bash compute_ppl_minicpmv.sh
```
### 🌵 Evaluate Generation Effectiveness
Go to the `src/evaluation` folder and evaluate model performance as follows:
* For Image Captioning and Multi-modal QA tasks, please use:
```bash
python generation.py --reference_file path_to_reference_data --candidate_file path_to_generation_data
```
* For Multi-Modal Fact Verification task, please use:
```bash
python classification.py --true_file path_to_reference_data --pred_file path_to_generation_data
```
* For Image Reranking task, please use:
```bash
python -m pytorch_fid path/to/reference_images path/to/rerank_images
```
## 🎃 Contact
If you have questions, suggestions, and bug reports, please email:
```
[email protected] [email protected]
``` |