File size: 6,115 Bytes
898c4b4 56ccddf 898c4b4 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf fcdfb26 56ccddf 651d3ea 821147a 9185836 821147a 56ccddf 651d3ea 9185836 898c4b4 2f75099 d9320b0 898c4b4 cf59798 898c4b4 fc7e8ae cf59798 898c4b4 cf59798 898c4b4 cf59798 fc7e8ae eda55dc cf59798 2f75099 d9320b0 bdc26d8 2f75099 6eea38b 2f75099 6eea38b f1576c1 2f75099 f1576c1 2f75099 f1576c1 2f75099 cfadb08 2f75099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
language:
- en
- zh
- fr
license: apache-2.0
size_categories:
- 1K<n<10K
task_categories:
- question-answering
- multiple-choice
pretty_name: 'FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question
Answering'
tags:
- finance
dataset_info:
features:
- name: idx
dtype: int32
- name: question_id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: options
sequence: string
- name: image_1
dtype: image
- name: image_2
dtype: image
- name: image_3
dtype: image
- name: image_4
dtype: image
- name: image_5
dtype: image
- name: image_6
dtype: image
- name: image_7
dtype: image
- name: image_type
dtype: string
- name: answers
dtype: string
- name: explanation
dtype: string
- name: topic_difficulty
dtype: string
- name: question_type
dtype: string
- name: subfield
dtype: string
- name: language
dtype: string
- name: main_question_id
dtype: string
- name: sub_question_id
dtype: string
- name: ans_image_1
dtype: image
- name: ans_image_2
dtype: image
- name: ans_image_3
dtype: image
- name: ans_image_4
dtype: image
- name: ans_image_5
dtype: image
- name: ans_image_6
dtype: image
- name: release
dtype: string
splits:
- name: release_v2501
num_bytes: 3265962.0
num_examples: 103
- name: release_v2406
num_bytes: 113227632.37
num_examples: 1945
download_size: 93526691
dataset_size: 116493594.37
configs:
- config_name: default
data_files:
- split: release_v2501
path: data/release_v2501-*
- split: release_v2406
path: data/release_v2406-*
---
## Introduction
`FAMMA` is a multi-modal financial Q&A benchmark dataset. The questions encompass three heterogeneous image types - tables, charts and text & math screenshots - and span eight subfields in finance, comprehensively covering topics across major asset classes. Additionally, all the questions are categorized by three difficulty levels — easy, medium, and hard - and are available in three languages — English, Chinese, and French. Furthermore, the questions are divided into two types: multiple-choice and open questions.
More importantly, `FAMMA` provides a "live" benchmark for evaluating financial analysis capabilities of LLMs. The benchmark continuously collects new questions from real-world financial professionals, ensuring up-to-date and contamination-free evaluation.
The leaderboard is regularly updated and can be accessed at https://famma-bench.github.io/famma/.
The project code is available at https://github.com/famma-bench/bench-script.
## NEWS
🔥 **Latest Updates**:
- [2025/02] Release of `release_v2501` dataset.
- [2025/01] Release of `release_v2406` dataset, now including answers and explanations with enhanced quality.
- [2024/06] Initial public release of `FAMMA` benchmark (based on the `release_v2406` dataset), along with our paper: [FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering](https://arxiv.org/abs/2410.04526).
## Dataset Versions
FAMMA is continuously updated with new questions. We provide different versions of the dataset:
* `release_v2406`: The release containing 1935 questions, collected from online sources. Apart from the questions, both answers and explanations are provided.
* `release_v2501`: The release containing 100 questions, created by invited experts. Only the questions are provided.
## Dataset Structure
- idx:a unique identifier for the index of the question in the dataset.
- question_id: a unique identifier for the question across the whole dataset: {language}_{main_question_id}_{sub_question_id}_{release_version}.
- context: relevant background information related to the question.
- question: the specific query being asked.
- options: the specific query being asked.
- image_1- image_7: directories of images referenced in the context or question.
- image_type: type of the image, e.g., chart, table, screenshot.
- answers: a concise and accurate response. **(public on release v2406, non-public on the live set release v2501)**
- explanation:a detailed justification for the answer. **(public on release v2406, non-public on the live set release v2501)**
- topic_difficulty: a measure of the question's complexity based on the level of reasoning required.
- question_type: categorized as either multiple-choice or open-ended.
- subfield: the specific area of expertise to which the question belongs, categorized into eight subfields.
- language:the language in which the question text is written.
- main_question_id:a unique identifier for the question within its context; questions with the same context share the same ID.
- sub_question_id:a unique identifier for the question within its corresponding main question.
- ans_image_1 - ans_image_6: **(public on release v2406, non-public on the live set release v2501)**
## Download
see the script at https://github.com/famma-bench/bench-script/blob/main/step_1_download_dataset.py
Fristly, clone the repository and install the dependencies:
```bash
git clone https://github.com/famma-bench/bench-script.git
pip install -r requirements.txt
```
To download the dataset, run the following command:
```bash
python step_1_download_dataset.py \
--hf_dir "weaverbirdllm/famma" \
--split "release_v2406" \ # or "release_v2501" or None to download the live set
--save_dir "./hf_data"
```
Options:
- `--hf_dir`: HuggingFace repository name
- `--split`: Specific version to download (optional)
- `--save_dir`: Local directory to save the dataset (default: "./hf_data")
## Citation
If you use FAMMA in your research, please cite our paper as follows:
```latex
@article{xue2024famma,
title={FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering},
author={Siqiao Xue, Tingting Chen, Fan Zhou, Qingyang Dai, Zhixuan Chu, and Hongyuan Mei},
journal={arXiv preprint arXiv:2410.04526},
year={2024},
url={https://arxiv.org/abs/2410.04526}
}
``` |