File size: 6,115 Bytes
898c4b4
 
 
 
 
56ccddf
898c4b4
 
56ccddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
fcdfb26
56ccddf
 
 
651d3ea
821147a
 
9185836
 
 
821147a
 
56ccddf
 
 
651d3ea
 
9185836
 
898c4b4
2f75099
d9320b0
 
898c4b4
cf59798
898c4b4
fc7e8ae
 
 
cf59798
898c4b4
cf59798
898c4b4
 
 
cf59798
 
 
fc7e8ae
eda55dc
cf59798
 
 
 
 
 
 
 
 
 
 
2f75099
d9320b0
bdc26d8
 
2f75099
 
 
 
 
6eea38b
 
2f75099
 
 
 
 
 
6eea38b
f1576c1
2f75099
f1576c1
2f75099
f1576c1
2f75099
 
cfadb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f75099
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
language:
- en
- zh
- fr
license: apache-2.0
size_categories:
- 1K<n<10K
task_categories:
- question-answering
- multiple-choice
pretty_name: 'FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question
  Answering'
tags:
- finance
dataset_info:
  features:
  - name: idx
    dtype: int32
  - name: question_id
    dtype: string
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: options
    sequence: string
  - name: image_1
    dtype: image
  - name: image_2
    dtype: image
  - name: image_3
    dtype: image
  - name: image_4
    dtype: image
  - name: image_5
    dtype: image
  - name: image_6
    dtype: image
  - name: image_7
    dtype: image
  - name: image_type
    dtype: string
  - name: answers
    dtype: string
  - name: explanation
    dtype: string
  - name: topic_difficulty
    dtype: string
  - name: question_type
    dtype: string
  - name: subfield
    dtype: string
  - name: language
    dtype: string
  - name: main_question_id
    dtype: string
  - name: sub_question_id
    dtype: string
  - name: ans_image_1
    dtype: image
  - name: ans_image_2
    dtype: image
  - name: ans_image_3
    dtype: image
  - name: ans_image_4
    dtype: image
  - name: ans_image_5
    dtype: image
  - name: ans_image_6
    dtype: image
  - name: release
    dtype: string
  splits:
  - name: release_v2501
    num_bytes: 3265962.0
    num_examples: 103
  - name: release_v2406
    num_bytes: 113227632.37
    num_examples: 1945
  download_size: 93526691
  dataset_size: 116493594.37
configs:
- config_name: default
  data_files:
  - split: release_v2501
    path: data/release_v2501-*
  - split: release_v2406
    path: data/release_v2406-*
---
## Introduction 



`FAMMA` is a multi-modal financial Q&A benchmark dataset. The questions encompass three heterogeneous image types - tables, charts and text & math screenshots - and span eight subfields in finance, comprehensively covering topics across major asset classes. Additionally, all the questions are categorized by three difficulty levels — easy, medium, and hard - and are available in three languages — English, Chinese, and French. Furthermore, the questions are divided into two types: multiple-choice and open questions.

More importantly, `FAMMA` provides a "live" benchmark for evaluating financial analysis capabilities of LLMs. The benchmark continuously collects new questions from real-world financial professionals, ensuring up-to-date and contamination-free evaluation. 


The leaderboard is regularly updated and can be accessed at https://famma-bench.github.io/famma/.  

The project code is available at https://github.com/famma-bench/bench-script.



## NEWS

🔥 **Latest Updates**:
- [2025/02]  Release of `release_v2501` dataset.
- [2025/01]  Release of `release_v2406` dataset, now including answers and explanations with enhanced quality.
- [2024/06]  Initial public release of `FAMMA` benchmark (based on the `release_v2406` dataset), along with our paper: [FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering](https://arxiv.org/abs/2410.04526).


## Dataset Versions

FAMMA is continuously updated with new questions. We provide different versions of the dataset:

* `release_v2406`: The release containing 1935 questions, collected from online sources. Apart from the questions, both answers and explanations are provided.
* `release_v2501`: The release containing 100 questions, created by invited experts. Only the questions are provided.
  

##  Dataset Structure 

- idx:a unique identifier for the index of the question in the dataset.
- question_id: a unique identifier for the question across the whole dataset: {language}_{main_question_id}_{sub_question_id}_{release_version}.
- context: relevant background information related to the question.
- question: the specific query being asked.
- options: the specific query being asked.
- image_1- image_7: directories of images referenced in the context or question.
- image_type: type of the image, e.g., chart, table, screenshot.
- answers: a concise and accurate response. **(public on release v2406, non-public on the live set release v2501)**
- explanation:a detailed justification for the answer. **(public on release v2406, non-public on the live set release v2501)**
- topic_difficulty: a measure of the question's complexity based on the level of reasoning required.
- question_type: categorized as either multiple-choice or open-ended.
- subfield: the specific area of expertise to which the question belongs, categorized into eight subfields.
- language:the language in which the question text is written.
- main_question_id:a unique identifier for the question within its context; questions with the same context share the same ID.
- sub_question_id:a unique identifier for the question within its corresponding main question.
- ans_image_1 - ans_image_6: **(public on release v2406, non-public on the live set release v2501)**
 

## Download 

see the script at https://github.com/famma-bench/bench-script/blob/main/step_1_download_dataset.py


Fristly, clone the repository and install the dependencies:
```bash
git clone https://github.com/famma-bench/bench-script.git
pip install -r requirements.txt
```

To download the dataset, run the following command:


```bash
python step_1_download_dataset.py \
    --hf_dir "weaverbirdllm/famma" \
    --split "release_v2406" \ # or "release_v2501" or None to download the live set
    --save_dir "./hf_data"
```

Options:
- `--hf_dir`: HuggingFace repository name
- `--split`: Specific version to download (optional)
- `--save_dir`: Local directory to save the dataset (default: "./hf_data")


## Citation 
If you use FAMMA in your research, please cite our paper as follows:

```latex
@article{xue2024famma,
  title={FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering},
  author={Siqiao Xue, Tingting Chen, Fan Zhou, Qingyang Dai, Zhixuan Chu, and Hongyuan Mei},
  journal={arXiv preprint arXiv:2410.04526},
  year={2024},
  url={https://arxiv.org/abs/2410.04526}
}

```