Upload senbench_airqualitys5p_wrapper.py
Browse files
airquality_s5p/senbench_airqualitys5p_wrapper.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia as K
|
2 |
+
import torch
|
3 |
+
from torchgeo.datasets.geo import NonGeoDataset
|
4 |
+
import os
|
5 |
+
from collections.abc import Callable, Sequence
|
6 |
+
from torch import Tensor
|
7 |
+
import numpy as np
|
8 |
+
import rasterio
|
9 |
+
import cv2
|
10 |
+
from pyproj import Transformer
|
11 |
+
from datetime import date
|
12 |
+
from typing import TypeAlias, ClassVar
|
13 |
+
import pathlib
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import pdb
|
17 |
+
|
18 |
+
logging.getLogger("rasterio").setLevel(logging.ERROR)
|
19 |
+
Path: TypeAlias = str | os.PathLike[str]
|
20 |
+
|
21 |
+
class SenBenchAirQualityS5P(NonGeoDataset):
|
22 |
+
url = None
|
23 |
+
splits = ('train', 'val', 'test')
|
24 |
+
split_fnames = {
|
25 |
+
'train': 'train.csv',
|
26 |
+
'val': 'val.csv',
|
27 |
+
'test': 'test.csv',
|
28 |
+
}
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
root: Path = 'data',
|
33 |
+
split: str = 'train',
|
34 |
+
modality = 'no2', # or 'o3'
|
35 |
+
mode = 'annual', # or 'seasonal'
|
36 |
+
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
|
37 |
+
download: bool = False,
|
38 |
+
) -> None:
|
39 |
+
|
40 |
+
self.root = root
|
41 |
+
self.transforms = transforms
|
42 |
+
self.download = download
|
43 |
+
#self.checksum = checksum
|
44 |
+
|
45 |
+
assert split in ['train', 'val', 'test']
|
46 |
+
|
47 |
+
self.modality = modality
|
48 |
+
self.mode = mode
|
49 |
+
|
50 |
+
if self.mode == 'annual':
|
51 |
+
mode_dir = 's5p_annual'
|
52 |
+
elif self.mode == 'seasonal':
|
53 |
+
mode_dir = 's5p_seasonal'
|
54 |
+
|
55 |
+
self.img_dir = os.path.join(root, modality, mode_dir)
|
56 |
+
self.label_dir = os.path.join(root, modality, 'label_annual')
|
57 |
+
|
58 |
+
self.split_csv = os.path.join(self.root, modality, self.split_fnames[split])
|
59 |
+
with open(self.split_csv, 'r') as f:
|
60 |
+
lines = f.readlines()
|
61 |
+
self.pids = []
|
62 |
+
for line in lines:
|
63 |
+
self.pids.append(line.strip())
|
64 |
+
|
65 |
+
self.reference_date = date(1970, 1, 1)
|
66 |
+
self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m
|
67 |
+
|
68 |
+
def __len__(self):
|
69 |
+
return len(self.pids)
|
70 |
+
|
71 |
+
def __getitem__(self, index):
|
72 |
+
|
73 |
+
images, meta_infos = self._load_image(index)
|
74 |
+
#meta_info = np.array([coord[0], coord[1], np.nan, self.patch_area]).astype(np.float32)
|
75 |
+
label = self._load_target(index)
|
76 |
+
if self.mode == 'annual':
|
77 |
+
sample = {'image': images[0], 'groudtruth': label, 'meta': meta_infos[0]}
|
78 |
+
elif self.mode == 'seasonal':
|
79 |
+
sample = {'image': images, 'groudtruth': label, 'meta': meta_infos}
|
80 |
+
|
81 |
+
#pdb.set_trace()
|
82 |
+
|
83 |
+
if self.transforms is not None:
|
84 |
+
sample = self.transforms(sample)
|
85 |
+
|
86 |
+
return sample
|
87 |
+
|
88 |
+
|
89 |
+
def _load_image(self, index):
|
90 |
+
|
91 |
+
pid = self.pids[index]
|
92 |
+
s5p_path = os.path.join(self.img_dir, pid)
|
93 |
+
|
94 |
+
img_fnames = os.listdir(s5p_path)
|
95 |
+
s5p_paths = []
|
96 |
+
for img_fname in img_fnames:
|
97 |
+
s5p_paths.append(os.path.join(s5p_path, img_fname))
|
98 |
+
|
99 |
+
imgs = []
|
100 |
+
meta_infos = []
|
101 |
+
for img_path in s5p_paths:
|
102 |
+
with rasterio.open(img_path) as src:
|
103 |
+
img = src.read(1)
|
104 |
+
img[np.isnan(img)] = 0
|
105 |
+
img = cv2.resize(img, (56,56), interpolation=cv2.INTER_CUBIC)
|
106 |
+
img = torch.from_numpy(img).float()
|
107 |
+
img = img.unsqueeze(0)
|
108 |
+
|
109 |
+
# get lon, lat
|
110 |
+
cx,cy = src.xy(src.height // 2, src.width // 2)
|
111 |
+
if src.crs.to_string() != 'EPSG:4326':
|
112 |
+
# convert to lon, lat
|
113 |
+
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
|
114 |
+
lon, lat = crs_transformer.transform(cx,cy)
|
115 |
+
else:
|
116 |
+
lon, lat = cx, cy
|
117 |
+
# get time
|
118 |
+
img_fname = os.path.basename(img_path)
|
119 |
+
date_str = img_fname.split('_')[0][:10]
|
120 |
+
date_obj = date(int(date_str[:4]), int(date_str[5:7]), int(date_str[8:10]))
|
121 |
+
delta = (date_obj - self.reference_date).days
|
122 |
+
meta_info = np.array([lon, lat, delta, self.patch_area]).astype(np.float32)
|
123 |
+
meta_info = torch.from_numpy(meta_info)
|
124 |
+
|
125 |
+
imgs.append(img)
|
126 |
+
meta_infos.append(meta_info)
|
127 |
+
|
128 |
+
if self.mode == 'seasonal':
|
129 |
+
# pad to 4 images if less than 4
|
130 |
+
while len(imgs) < 4:
|
131 |
+
imgs.append(img)
|
132 |
+
meta_infos.append(meta_info)
|
133 |
+
|
134 |
+
return imgs, meta_infos
|
135 |
+
|
136 |
+
def _load_target(self, index):
|
137 |
+
|
138 |
+
pid = self.pids[index]
|
139 |
+
label_path = os.path.join(self.label_dir, pid+'.tif')
|
140 |
+
|
141 |
+
with rasterio.open(label_path) as src:
|
142 |
+
label = src.read(1)
|
143 |
+
label = cv2.resize(label, (56,56), interpolation=cv2.INTER_NEAREST) # 0-650
|
144 |
+
# label contains -inf
|
145 |
+
#pdb.set_trace()
|
146 |
+
label[label<-1e10] = np.nan
|
147 |
+
label[label>1e10] = np.nan
|
148 |
+
label = torch.from_numpy(label.astype('float32'))
|
149 |
+
|
150 |
+
return label
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
class RegDataAugmentation(torch.nn.Module):
|
155 |
+
def __init__(self, split, size):
|
156 |
+
super().__init__()
|
157 |
+
|
158 |
+
mean = torch.Tensor([0.0])
|
159 |
+
std = torch.Tensor([1.0])
|
160 |
+
|
161 |
+
self.norm = K.augmentation.Normalize(mean=mean, std=std)
|
162 |
+
|
163 |
+
if split == "train":
|
164 |
+
self.transform = K.augmentation.AugmentationSequential(
|
165 |
+
K.augmentation.Resize(size=size, align_corners=True),
|
166 |
+
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
|
167 |
+
K.augmentation.RandomHorizontalFlip(p=0.5),
|
168 |
+
K.augmentation.RandomVerticalFlip(p=0.5),
|
169 |
+
data_keys=["input", "input"],
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
self.transform = K.augmentation.AugmentationSequential(
|
173 |
+
K.augmentation.Resize(size=size, align_corners=True),
|
174 |
+
data_keys=["input", "input"],
|
175 |
+
)
|
176 |
+
|
177 |
+
@torch.no_grad()
|
178 |
+
def forward(self, batch: dict[str,]):
|
179 |
+
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
|
180 |
+
x,mask = batch["image"], batch["groudtruth"]
|
181 |
+
x = self.norm(x)
|
182 |
+
x_out, mask_out = self.transform(x, mask.unsqueeze(0))
|
183 |
+
return x_out.squeeze(0), mask_out.squeeze(0), batch["meta"]
|
184 |
+
|
185 |
+
|
186 |
+
class SenBenchAirQualityS5PDataset:
|
187 |
+
def __init__(self, config):
|
188 |
+
self.dataset_config = config
|
189 |
+
self.img_size = (config.image_resolution, config.image_resolution)
|
190 |
+
self.root_dir = config.data_path
|
191 |
+
self.modality = config.modality
|
192 |
+
self.mode = config.mode
|
193 |
+
|
194 |
+
def create_dataset(self):
|
195 |
+
train_transform = RegDataAugmentation(split="train", size=self.img_size)
|
196 |
+
eval_transform = RegDataAugmentation(split="test", size=self.img_size)
|
197 |
+
|
198 |
+
dataset_train = SenBenchAirQualityS5P(
|
199 |
+
root=self.root_dir, split="train", modality=self.modality, mode=self.mode, transforms=train_transform
|
200 |
+
)
|
201 |
+
dataset_val = SenBenchAirQualityS5P(
|
202 |
+
root=self.root_dir, split="val", modality=self.modality, mode=self.mode, transforms=eval_transform
|
203 |
+
)
|
204 |
+
dataset_test = SenBenchAirQualityS5P(
|
205 |
+
root=self.root_dir, split="test", modality=self.modality, mode=self.mode, transforms=eval_transform
|
206 |
+
)
|
207 |
+
|
208 |
+
return dataset_train, dataset_val, dataset_test
|