wangyi111 commited on
Commit
35caaf9
·
verified ·
1 Parent(s): 1eba504

Upload senbench_clouds3_wrapper.py

Browse files
cloud_s3olci/senbench_clouds3_wrapper.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import kornia as K
2
+ import torch
3
+ from torchgeo.datasets.geo import NonGeoDataset
4
+ import os
5
+ from collections.abc import Callable, Sequence
6
+ from torch import Tensor
7
+ import numpy as np
8
+ import rasterio
9
+ import cv2
10
+ from pyproj import Transformer
11
+ from datetime import date
12
+ from typing import TypeAlias, ClassVar
13
+ import pathlib
14
+
15
+ import logging
16
+
17
+ logging.getLogger("rasterio").setLevel(logging.ERROR)
18
+ Path: TypeAlias = str | os.PathLike[str]
19
+
20
+ class SenBenchCloudS3(NonGeoDataset):
21
+ url = None
22
+ #base_dir = 'all_imgs'
23
+ splits = ('train', 'val', 'test')
24
+
25
+ split_filenames = {
26
+ 'train': 'train.csv',
27
+ 'val': 'val.csv',
28
+ 'test': 'test.csv',
29
+ }
30
+ all_band_names = (
31
+ 'Oa01_radiance', 'Oa02_radiance', 'Oa03_radiance', 'Oa04_radiance', 'Oa05_radiance', 'Oa06_radiance', 'Oa07_radiance',
32
+ 'Oa08_radiance', 'Oa09_radiance', 'Oa10_radiance', 'Oa11_radiance', 'Oa12_radiance', 'Oa13_radiance', 'Oa14_radiance',
33
+ 'Oa15_radiance', 'Oa16_radiance', 'Oa17_radiance', 'Oa18_radiance', 'Oa19_radiance', 'Oa20_radiance', 'Oa21_radiance',
34
+ )
35
+ all_band_scale = (
36
+ 0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,
37
+ 0.00876539,0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,
38
+ 0.00526779,0.00530267,0.00493004,0.00549962,0.00502847,0.00326378,0.00324118)
39
+ rgb_bands = ('Oa08_radiance', 'Oa06_radiance', 'Oa04_radiance')
40
+
41
+ Cls_index_binary = {
42
+ 'invalid': 0, # --> 255 should be ignored during training
43
+ 'clear': 1, # --> 0
44
+ 'cloud': 2, # --> 1
45
+ }
46
+
47
+ Cls_index_multi = {
48
+ 'invalid': 0, # --> 255 should be ignored during training
49
+ 'clear': 1, # --> 0
50
+ 'cloud-sure': 2, # --> 1
51
+ 'cloud-ambiguous': 3, # --> 2
52
+ 'cloud shadow': 4, # --> 3
53
+ 'snow and ice': 5, # --> 4
54
+ }
55
+
56
+
57
+
58
+ def __init__(
59
+ self,
60
+ root: Path = 'data',
61
+ split: str = 'train',
62
+ bands: Sequence[str] = all_band_names,
63
+ mode = 'multi',
64
+ transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
65
+ download: bool = False,
66
+ ) -> None:
67
+
68
+ self.root = root
69
+ self.transforms = transforms
70
+ self.download = download
71
+ #self.checksum = checksum
72
+
73
+ assert split in ['train', 'val', 'test']
74
+
75
+ self.bands = bands
76
+ self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
77
+
78
+ self.mode = mode
79
+ self.img_dir = os.path.join(self.root, 's3_olci')
80
+ self.label_dir = os.path.join(self.root, 'cloud_'+mode)
81
+
82
+ self.split_csv = os.path.join(self.root, self.split_filenames[split])
83
+ self.fnames = []
84
+ with open(self.split_csv, 'r') as f:
85
+ lines = f.readlines()
86
+ for line in lines:
87
+ fname = line.strip()
88
+ self.fnames.append(fname)
89
+
90
+ self.reference_date = date(1970, 1, 1)
91
+ self.patch_area = (8*300/1000)**2 # patchsize 8 pix, gsd 300m
92
+
93
+ def __len__(self):
94
+ return len(self.fnames)
95
+
96
+ def __getitem__(self, index):
97
+
98
+ images, meta_infos = self._load_image(index)
99
+ #meta_info = np.array([coord[0], coord[1], np.nan, self.patch_area]).astype(np.float32)
100
+ label = self._load_target(index)
101
+ sample = {'image': images, 'mask': label, 'meta': meta_infos}
102
+
103
+ if self.transforms is not None:
104
+ sample = self.transforms(sample)
105
+
106
+ return sample
107
+
108
+
109
+ def _load_image(self, index):
110
+
111
+ fname = self.fnames[index]
112
+ s3_path = os.path.join(self.img_dir, fname)
113
+
114
+ with rasterio.open(s3_path) as src:
115
+ img = src.read()
116
+ img[np.isnan(img)] = 0
117
+ chs = []
118
+ for b in range(21):
119
+ ch = img[b]*self.all_band_scale[b]
120
+ #ch = cv2.resize(ch, (256,256), interpolation=cv2.INTER_CUBIC)
121
+ chs.append(ch)
122
+ img = np.stack(chs)
123
+ img = torch.from_numpy(img).float()
124
+
125
+ # get lon, lat
126
+ cx,cy = src.xy(src.height // 2, src.width // 2)
127
+ if src.crs.to_string() != 'EPSG:4326':
128
+ # convert to lon, lat
129
+ crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
130
+ lon, lat = crs_transformer.transform(cx,cy)
131
+ else:
132
+ lon, lat = cx, cy
133
+ # get time
134
+ img_fname = os.path.basename(s3_path)
135
+ date_str = img_fname.split('____')[1][:8]
136
+ date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
137
+ delta = (date_obj - self.reference_date).days
138
+ meta_info = np.array([lon, lat, delta, self.patch_area]).astype(np.float32)
139
+ meta_info = torch.from_numpy(meta_info)
140
+
141
+ return img, meta_info
142
+
143
+ def _load_target(self, index):
144
+
145
+ fname = self.fnames[index]
146
+ label_path = os.path.join(self.label_dir, fname)
147
+
148
+ with rasterio.open(label_path) as src:
149
+ label = src.read(1)
150
+ #label = cv2.resize(label, (256,256), interpolation=cv2.INTER_NEAREST) # 0-650
151
+ label[label==0] = 256
152
+ label = label - 1
153
+ labels = torch.from_numpy(label).long()
154
+
155
+ return labels
156
+
157
+
158
+
159
+ class SegDataAugmentation(torch.nn.Module):
160
+ def __init__(self, split, size):
161
+ super().__init__()
162
+
163
+ mean = torch.Tensor([0.0])
164
+ std = torch.Tensor([1.0])
165
+
166
+ self.norm = K.augmentation.Normalize(mean=mean, std=std)
167
+
168
+ if split == "train":
169
+ self.transform = K.augmentation.AugmentationSequential(
170
+ K.augmentation.Resize(size=size, align_corners=True),
171
+ K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
172
+ K.augmentation.RandomHorizontalFlip(p=0.5),
173
+ K.augmentation.RandomVerticalFlip(p=0.5),
174
+ data_keys=["input", "mask"],
175
+ )
176
+ else:
177
+ self.transform = K.augmentation.AugmentationSequential(
178
+ K.augmentation.Resize(size=size, align_corners=True),
179
+ data_keys=["input", "mask"],
180
+ )
181
+
182
+ @torch.no_grad()
183
+ def forward(self, batch: dict[str,]):
184
+ """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
185
+ x,mask = batch["image"], batch["mask"]
186
+ x = self.norm(x)
187
+ x_out, mask_out = self.transform(x, mask)
188
+ return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]
189
+
190
+
191
+ class SenBenchCloudS3Dataset:
192
+ def __init__(self, config):
193
+ self.dataset_config = config
194
+ self.img_size = (config.image_resolution, config.image_resolution)
195
+ self.root_dir = config.data_path
196
+ self.bands = config.band_names
197
+ self.mode = config.mode
198
+
199
+ def create_dataset(self):
200
+ train_transform = SegDataAugmentation(split="train", size=self.img_size)
201
+ eval_transform = SegDataAugmentation(split="test", size=self.img_size)
202
+
203
+ dataset_train = SenBenchCloudS3(
204
+ root=self.root_dir, split="train", bands=self.bands, mode=self.mode, transforms=train_transform
205
+ )
206
+ dataset_val = SenBenchCloudS3(
207
+ root=self.root_dir, split="val", bands=self.bands, mode=self.mode, transforms=eval_transform
208
+ )
209
+ dataset_test = SenBenchCloudS3(
210
+ root=self.root_dir, split="test", bands=self.bands, mode=self.mode, transforms=eval_transform
211
+ )
212
+
213
+ return dataset_train, dataset_val, dataset_test