Upload 2 files
Browse files
eurosat_s1sar/eurosat_sar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c88b63d03670df2b30a197cfad4369194f167d0a4ded0a682d9871d7701d61cb
|
3 |
+
size 922837319
|
eurosat_s1sar/senbench_eurosats1_wrapper.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia.augmentation as K
|
2 |
+
import torch
|
3 |
+
from torchgeo.datasets import EuroSAT
|
4 |
+
import os
|
5 |
+
from collections.abc import Callable, Sequence
|
6 |
+
from torch import Tensor
|
7 |
+
import numpy as np
|
8 |
+
import rasterio
|
9 |
+
from pyproj import Transformer
|
10 |
+
from typing import TypeAlias, ClassVar
|
11 |
+
import pathlib
|
12 |
+
Path: TypeAlias = str | os.PathLike[str]
|
13 |
+
|
14 |
+
class SenBenchEuroSATS1(EuroSAT):
|
15 |
+
url = None
|
16 |
+
base_dir = 'all_imgs'
|
17 |
+
splits = ('train', 'val', 'test')
|
18 |
+
split_filenames: ClassVar[dict[str, str]] = {
|
19 |
+
'train': 'eurosat-train.txt',
|
20 |
+
'val': 'eurosat-val.txt',
|
21 |
+
'test': 'eurosat-test.txt',
|
22 |
+
}
|
23 |
+
all_band_names = ('VV','VH')
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
root: Path = 'data',
|
28 |
+
split: str = 'train',
|
29 |
+
bands: Sequence[str] = ['VV','VH'],
|
30 |
+
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
|
31 |
+
download: bool = False,
|
32 |
+
) -> None:
|
33 |
+
|
34 |
+
self.root = root
|
35 |
+
self.transforms = transforms
|
36 |
+
self.download = download
|
37 |
+
#self.checksum = checksum
|
38 |
+
|
39 |
+
assert split in ['train', 'val', 'test']
|
40 |
+
|
41 |
+
self._validate_bands(bands)
|
42 |
+
self.bands = bands
|
43 |
+
self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
|
44 |
+
|
45 |
+
self._verify()
|
46 |
+
|
47 |
+
self.valid_fns = []
|
48 |
+
self.classes = []
|
49 |
+
with open(os.path.join(self.root, self.split_filenames[split])) as f:
|
50 |
+
for fn in f:
|
51 |
+
self.valid_fns.append(fn.strip().replace('.jpg', '.tif'))
|
52 |
+
cls_name = fn.strip().split('_')[0]
|
53 |
+
if cls_name not in self.classes:
|
54 |
+
self.classes.append(cls_name)
|
55 |
+
self.classes = sorted(self.classes)
|
56 |
+
|
57 |
+
self.root = os.path.join(self.root, self.base_dir)
|
58 |
+
#root_path = pathlib.Path(root,split)
|
59 |
+
#self.classes = sorted([d.name for d in root_path.iterdir() if d.is_dir()])
|
60 |
+
self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)}
|
61 |
+
|
62 |
+
self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m
|
63 |
+
|
64 |
+
def __len__(self):
|
65 |
+
return len(self.valid_fns)
|
66 |
+
|
67 |
+
def __getitem__(self, index):
|
68 |
+
|
69 |
+
image, coord, label = self._load_image(index)
|
70 |
+
meta_info = np.array([coord[0], coord[1], np.nan, self.patch_area]).astype(np.float32)
|
71 |
+
sample = {'image': image, 'label': label, 'meta': torch.from_numpy(meta_info)}
|
72 |
+
|
73 |
+
if self.transforms is not None:
|
74 |
+
sample = self.transforms(sample)
|
75 |
+
|
76 |
+
return sample
|
77 |
+
|
78 |
+
|
79 |
+
def _load_image(self, index):
|
80 |
+
|
81 |
+
fname = self.valid_fns[index]
|
82 |
+
dirname = fname.split('_')[0]
|
83 |
+
img_path = os.path.join(self.root, dirname, fname)
|
84 |
+
target = self.class_to_idx[dirname]
|
85 |
+
|
86 |
+
with rasterio.open(img_path) as src:
|
87 |
+
image = src.read(self.band_indices).astype('float32')
|
88 |
+
cx,cy = src.xy(src.height // 2, src.width // 2)
|
89 |
+
if src.crs.to_string() != 'EPSG:4326':
|
90 |
+
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
|
91 |
+
lon, lat = crs_transformer.transform(cx,cy)
|
92 |
+
else:
|
93 |
+
lon, lat = cx, cy
|
94 |
+
|
95 |
+
return torch.from_numpy(image), (lon,lat), target
|
96 |
+
|
97 |
+
|
98 |
+
class ClsDataAugmentation(torch.nn.Module):
|
99 |
+
BAND_STATS = {
|
100 |
+
'mean': {
|
101 |
+
# 'B01': 1353.72696296,
|
102 |
+
# 'B02': 1117.20222222,
|
103 |
+
# 'B03': 1041.8842963,
|
104 |
+
# 'B04': 946.554,
|
105 |
+
# 'B05': 1199.18896296,
|
106 |
+
# 'B06': 2003.00696296,
|
107 |
+
# 'B07': 2374.00874074,
|
108 |
+
# 'B08': 2301.22014815,
|
109 |
+
# 'B8A': 2599.78311111,
|
110 |
+
# 'B09': 732.18207407,
|
111 |
+
# 'B10': 12.09952894,
|
112 |
+
# 'B11': 1820.69659259,
|
113 |
+
# 'B12': 1118.20259259,
|
114 |
+
'VV': -12.54847273,
|
115 |
+
'VH': -20.19237134
|
116 |
+
},
|
117 |
+
'std': {
|
118 |
+
# 'B01': 897.27143653,
|
119 |
+
# 'B02': 736.01759721,
|
120 |
+
# 'B03': 684.77615743,
|
121 |
+
# 'B04': 620.02902871,
|
122 |
+
# 'B05': 791.86263829,
|
123 |
+
# 'B06': 1341.28018273,
|
124 |
+
# 'B07': 1595.39989386,
|
125 |
+
# 'B08': 1545.52915718,
|
126 |
+
# 'B8A': 1750.12066835,
|
127 |
+
# 'B09': 475.11595216,
|
128 |
+
# 'B10': 98.26600935,
|
129 |
+
# 'B11': 1216.48651476,
|
130 |
+
# 'B12': 736.6981037,
|
131 |
+
'VV': 5.25697717,
|
132 |
+
'VH': 5.91150917
|
133 |
+
}
|
134 |
+
}
|
135 |
+
|
136 |
+
def __init__(self, split, size, bands):
|
137 |
+
super().__init__()
|
138 |
+
|
139 |
+
mean = []
|
140 |
+
std = []
|
141 |
+
for band in bands:
|
142 |
+
mean.append(self.BAND_STATS['mean'][band])
|
143 |
+
std.append(self.BAND_STATS['std'][band])
|
144 |
+
mean = torch.Tensor(mean)
|
145 |
+
std = torch.Tensor(std)
|
146 |
+
|
147 |
+
if split == "train":
|
148 |
+
self.transform = torch.nn.Sequential(
|
149 |
+
K.Normalize(mean=mean, std=std),
|
150 |
+
K.Resize(size=size, align_corners=True),
|
151 |
+
K.RandomHorizontalFlip(p=0.5),
|
152 |
+
K.RandomVerticalFlip(p=0.5),
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
self.transform = torch.nn.Sequential(
|
156 |
+
K.Normalize(mean=mean, std=std),
|
157 |
+
K.Resize(size=size, align_corners=True),
|
158 |
+
)
|
159 |
+
|
160 |
+
@torch.no_grad()
|
161 |
+
def forward(self, batch: dict[str,]):
|
162 |
+
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
|
163 |
+
x_out = self.transform(batch["image"]).squeeze(0)
|
164 |
+
return x_out, batch["label"], batch["meta"]
|
165 |
+
|
166 |
+
|
167 |
+
class SenBenchEuroSATS1Dataset:
|
168 |
+
def __init__(self, config):
|
169 |
+
self.dataset_config = config
|
170 |
+
self.img_size = (config.image_resolution, config.image_resolution)
|
171 |
+
self.root_dir = config.data_path
|
172 |
+
self.bands = config.band_names
|
173 |
+
|
174 |
+
def create_dataset(self):
|
175 |
+
train_transform = ClsDataAugmentation(split="train", size=self.img_size, bands=self.bands)
|
176 |
+
eval_transform = ClsDataAugmentation(split="test", size=self.img_size, bands=self.bands)
|
177 |
+
|
178 |
+
dataset_train = SenBenchEuroSATS1(
|
179 |
+
root=self.root_dir, split="train", bands=self.bands, transforms=train_transform
|
180 |
+
)
|
181 |
+
dataset_val = SenBenchEuroSATS1(
|
182 |
+
root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform
|
183 |
+
)
|
184 |
+
dataset_test = SenBenchEuroSATS1(
|
185 |
+
root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform
|
186 |
+
)
|
187 |
+
|
188 |
+
return dataset_train, dataset_val, dataset_test
|