Upload senbench_so2sat_wrapper.py
Browse files
so2sat_s1s2/senbench_so2sat_wrapper.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia.augmentation as K
|
2 |
+
import torch
|
3 |
+
from torchgeo.datasets import So2Sat
|
4 |
+
import os
|
5 |
+
from collections.abc import Callable, Sequence
|
6 |
+
from torch import Tensor
|
7 |
+
import numpy as np
|
8 |
+
import rasterio
|
9 |
+
from pyproj import Transformer
|
10 |
+
import h5py
|
11 |
+
from typing import TypeAlias, ClassVar
|
12 |
+
import pathlib
|
13 |
+
Path: TypeAlias = str | os.PathLike[str]
|
14 |
+
|
15 |
+
class SenBenchSo2Sat(So2Sat):
|
16 |
+
|
17 |
+
versions = ('3_culture_10')
|
18 |
+
filenames_by_version: ClassVar[dict[str, dict[str, str]]] = {
|
19 |
+
# '2': {
|
20 |
+
# 'train': 'training.h5',
|
21 |
+
# 'validation': 'validation.h5',
|
22 |
+
# 'test': 'testing.h5',
|
23 |
+
# },
|
24 |
+
# '3_random': {'train': 'random/training.h5', 'test': 'random/testing.h5'},
|
25 |
+
# '3_block': {'train': 'block/training.h5', 'test': 'block/testing.h5'},
|
26 |
+
'3_culture_10': {
|
27 |
+
'train': 'culture_10/train-new.h5',
|
28 |
+
'val': 'culture_10/val-new.h5',
|
29 |
+
'test': 'culture_10/test-new.h5',
|
30 |
+
},
|
31 |
+
}
|
32 |
+
|
33 |
+
classes = (
|
34 |
+
'Compact high rise',
|
35 |
+
'Compact mid rise',
|
36 |
+
'Compact low rise',
|
37 |
+
'Open high rise',
|
38 |
+
'Open mid rise',
|
39 |
+
'Open low rise',
|
40 |
+
'Lightweight low rise',
|
41 |
+
'Large low rise',
|
42 |
+
'Sparsely built',
|
43 |
+
'Heavy industry',
|
44 |
+
'Dense trees',
|
45 |
+
'Scattered trees',
|
46 |
+
'Bush, scrub',
|
47 |
+
'Low plants',
|
48 |
+
'Bare rock or paved',
|
49 |
+
'Bare soil or sand',
|
50 |
+
'Water',
|
51 |
+
)
|
52 |
+
|
53 |
+
all_s1_band_names = (
|
54 |
+
'S1_B1', # VH real
|
55 |
+
'S1_B2', # VH imaginary
|
56 |
+
'S1_B3', # VV real
|
57 |
+
'S1_B4', # VV imaginary
|
58 |
+
'S1_B5', # VH intensity
|
59 |
+
'S1_B6', # VV intensity
|
60 |
+
'S1_B7', # PolSAR covariance matrix off-diagonal real
|
61 |
+
'S1_B8', # PolSAR covariance matrix off-diagonal imaginary
|
62 |
+
)
|
63 |
+
all_s2_band_names = (
|
64 |
+
'S2_B02',
|
65 |
+
'S2_B03',
|
66 |
+
'S2_B04',
|
67 |
+
'S2_B05',
|
68 |
+
'S2_B06',
|
69 |
+
'S2_B07',
|
70 |
+
'S2_B08',
|
71 |
+
'S2_B8A',
|
72 |
+
'S2_B11',
|
73 |
+
'S2_B12',
|
74 |
+
)
|
75 |
+
all_band_names = all_s1_band_names + all_s2_band_names
|
76 |
+
|
77 |
+
rgb_bands = ('S2_B04', 'S2_B03', 'S2_B02')
|
78 |
+
|
79 |
+
BAND_SETS: ClassVar[dict[str, tuple[str, ...]]] = {
|
80 |
+
'all': all_band_names,
|
81 |
+
's1': all_s1_band_names,
|
82 |
+
's2': all_s2_band_names,
|
83 |
+
'rgb': rgb_bands,
|
84 |
+
}
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
root: Path = 'data',
|
89 |
+
version: str = '3_culture_10', # only supported version now
|
90 |
+
split: str = 'train',
|
91 |
+
bands: Sequence[str] = BAND_SETS['s2'], # only supported bands now
|
92 |
+
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
|
93 |
+
download: bool = False,
|
94 |
+
) -> None:
|
95 |
+
|
96 |
+
#h5py = lazy_import('h5py')
|
97 |
+
|
98 |
+
assert version in self.versions
|
99 |
+
assert split in self.filenames_by_version[version]
|
100 |
+
|
101 |
+
self._validate_bands(bands)
|
102 |
+
self.s1_band_indices: np.typing.NDArray[np.int_] = np.array(
|
103 |
+
[
|
104 |
+
self.all_s1_band_names.index(b)
|
105 |
+
for b in bands
|
106 |
+
if b in self.all_s1_band_names
|
107 |
+
]
|
108 |
+
).astype(int)
|
109 |
+
|
110 |
+
self.s1_band_names = [self.all_s1_band_names[i] for i in self.s1_band_indices]
|
111 |
+
|
112 |
+
self.s2_band_indices: np.typing.NDArray[np.int_] = np.array(
|
113 |
+
[
|
114 |
+
self.all_s2_band_names.index(b)
|
115 |
+
for b in bands
|
116 |
+
if b in self.all_s2_band_names
|
117 |
+
]
|
118 |
+
).astype(int)
|
119 |
+
|
120 |
+
self.s2_band_names = [self.all_s2_band_names[i] for i in self.s2_band_indices]
|
121 |
+
|
122 |
+
self.bands = bands
|
123 |
+
|
124 |
+
self.root = root
|
125 |
+
self.version = version
|
126 |
+
self.split = split
|
127 |
+
self.transforms = transforms
|
128 |
+
# self.checksum = checksum
|
129 |
+
|
130 |
+
self.fn = os.path.join(self.root, self.filenames_by_version[version][split])
|
131 |
+
|
132 |
+
# if not self._check_integrity():
|
133 |
+
# raise DatasetNotFoundError(self)
|
134 |
+
|
135 |
+
with h5py.File(self.fn, 'r') as f:
|
136 |
+
self.size: int = f['label'].shape[0]
|
137 |
+
|
138 |
+
self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m
|
139 |
+
|
140 |
+
|
141 |
+
def __getitem__(self, index: int) -> dict[str, Tensor]:
|
142 |
+
"""Return an index within the dataset.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
index: index to return
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
data and label at that index
|
149 |
+
"""
|
150 |
+
#h5py = lazy_import('h5py')
|
151 |
+
with h5py.File(self.fn, 'r') as f:
|
152 |
+
#s1 = f['sen1'][index].astype(np.float32)
|
153 |
+
#s1 = np.take(s1, indices=self.s1_band_indices, axis=2)
|
154 |
+
s2 = f['sen2'][index].astype(np.float32)
|
155 |
+
s2 = np.take(s2, indices=self.s2_band_indices, axis=2)
|
156 |
+
|
157 |
+
# convert one-hot encoding to int64 then torch int
|
158 |
+
label = torch.tensor(f['label'][index].argmax())
|
159 |
+
|
160 |
+
#s1 = np.rollaxis(s1, 2, 0) # convert to CxHxW format
|
161 |
+
s2 = np.rollaxis(s2, 2, 0) # convert to CxHxW format
|
162 |
+
|
163 |
+
#s1 = torch.from_numpy(s1)
|
164 |
+
s2 = torch.from_numpy(s2)
|
165 |
+
|
166 |
+
meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32)
|
167 |
+
|
168 |
+
sample = {'image': s2, 'label': label, 'meta': torch.from_numpy(meta_info)}
|
169 |
+
|
170 |
+
if self.transforms is not None:
|
171 |
+
sample = self.transforms(sample)
|
172 |
+
|
173 |
+
return sample
|
174 |
+
|
175 |
+
|
176 |
+
class ClsDataAugmentation(torch.nn.Module):
|
177 |
+
BAND_STATS = {
|
178 |
+
'mean': {
|
179 |
+
'B01': 1353.72696296,
|
180 |
+
'B02': 1117.20222222,
|
181 |
+
'B03': 1041.8842963,
|
182 |
+
'B04': 946.554,
|
183 |
+
'B05': 1199.18896296,
|
184 |
+
'B06': 2003.00696296,
|
185 |
+
'B07': 2374.00874074,
|
186 |
+
'B08': 2301.22014815,
|
187 |
+
'B8A': 2599.78311111,
|
188 |
+
'B09': 732.18207407,
|
189 |
+
'B10': 12.09952894,
|
190 |
+
'B11': 1820.69659259,
|
191 |
+
'B12': 1118.20259259,
|
192 |
+
#'VV': -12.54847273,
|
193 |
+
#'VH': -20.19237134
|
194 |
+
},
|
195 |
+
'std': {
|
196 |
+
'B01': 897.27143653,
|
197 |
+
'B02': 736.01759721,
|
198 |
+
'B03': 684.77615743,
|
199 |
+
'B04': 620.02902871,
|
200 |
+
'B05': 791.86263829,
|
201 |
+
'B06': 1341.28018273,
|
202 |
+
'B07': 1595.39989386,
|
203 |
+
'B08': 1545.52915718,
|
204 |
+
'B8A': 1750.12066835,
|
205 |
+
'B09': 475.11595216,
|
206 |
+
'B10': 98.26600935,
|
207 |
+
'B11': 1216.48651476,
|
208 |
+
'B12': 736.6981037,
|
209 |
+
#'VV': 5.25697717,
|
210 |
+
#'VH': 5.91150917
|
211 |
+
}
|
212 |
+
}
|
213 |
+
|
214 |
+
def __init__(self, split, size, bands):
|
215 |
+
super().__init__()
|
216 |
+
|
217 |
+
mean = []
|
218 |
+
std = []
|
219 |
+
for band in bands:
|
220 |
+
band = band[3:]
|
221 |
+
mean.append(self.BAND_STATS['mean'][band])
|
222 |
+
std.append(self.BAND_STATS['std'][band])
|
223 |
+
mean = torch.Tensor(mean)
|
224 |
+
std = torch.Tensor(std)
|
225 |
+
|
226 |
+
if split == "train":
|
227 |
+
self.transform = torch.nn.Sequential(
|
228 |
+
K.Normalize(mean=mean, std=std),
|
229 |
+
K.Resize(size=size, align_corners=True),
|
230 |
+
K.RandomHorizontalFlip(p=0.5),
|
231 |
+
K.RandomVerticalFlip(p=0.5),
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
self.transform = torch.nn.Sequential(
|
235 |
+
K.Normalize(mean=mean, std=std),
|
236 |
+
K.Resize(size=size, align_corners=True),
|
237 |
+
)
|
238 |
+
|
239 |
+
@torch.no_grad()
|
240 |
+
def forward(self, batch: dict[str,]):
|
241 |
+
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
|
242 |
+
x_out = self.transform(batch["image"]).squeeze(0)
|
243 |
+
return x_out, batch["label"], batch["meta"]
|
244 |
+
|
245 |
+
|
246 |
+
class SenBenchSo2SatDataset:
|
247 |
+
def __init__(self, config):
|
248 |
+
self.dataset_config = config
|
249 |
+
self.img_size = (config.image_resolution, config.image_resolution)
|
250 |
+
self.root_dir = config.data_path
|
251 |
+
self.bands = config.band_names
|
252 |
+
self.version = config.version
|
253 |
+
|
254 |
+
def create_dataset(self):
|
255 |
+
train_transform = ClsDataAugmentation(split="train", size=self.img_size, bands=self.bands)
|
256 |
+
eval_transform = ClsDataAugmentation(split="test", size=self.img_size, bands=self.bands)
|
257 |
+
|
258 |
+
dataset_train = SenBenchSo2Sat(
|
259 |
+
root=self.root_dir, version=self.version, split="train", bands=self.bands, transforms=train_transform
|
260 |
+
)
|
261 |
+
dataset_val = SenBenchSo2Sat(
|
262 |
+
root=self.root_dir, version=self.version, split="val", bands=self.bands, transforms=eval_transform
|
263 |
+
)
|
264 |
+
dataset_test = SenBenchSo2Sat(
|
265 |
+
root=self.root_dir, version=self.version, split="test", bands=self.bands, transforms=eval_transform
|
266 |
+
)
|
267 |
+
|
268 |
+
return dataset_train, dataset_val, dataset_test
|