|
import kornia as K |
|
import torch |
|
from torchgeo.datasets.geo import NonGeoDataset |
|
import os |
|
from collections.abc import Callable, Sequence |
|
from torch import Tensor |
|
import numpy as np |
|
import rasterio |
|
import cv2 |
|
from pyproj import Transformer |
|
from datetime import date |
|
from typing import TypeAlias, ClassVar |
|
import pathlib |
|
|
|
import logging |
|
|
|
logging.getLogger("rasterio").setLevel(logging.ERROR) |
|
Path: TypeAlias = str | os.PathLike[str] |
|
|
|
class SenBenchLC100S3Seg(NonGeoDataset): |
|
url = None |
|
|
|
splits = ('train', 'val', 'test') |
|
|
|
|
|
|
|
|
|
|
|
static_filenames = { |
|
'train': 'static_fnames-train.csv', |
|
'val': 'static_fnames-val.csv', |
|
'test': 'static_fnames-test.csv', |
|
} |
|
all_band_names = ( |
|
'Oa01_radiance', 'Oa02_radiance', 'Oa03_radiance', 'Oa04_radiance', 'Oa05_radiance', 'Oa06_radiance', 'Oa07_radiance', |
|
'Oa08_radiance', 'Oa09_radiance', 'Oa10_radiance', 'Oa11_radiance', 'Oa12_radiance', 'Oa13_radiance', 'Oa14_radiance', |
|
'Oa15_radiance', 'Oa16_radiance', 'Oa17_radiance', 'Oa18_radiance', 'Oa19_radiance', 'Oa20_radiance', 'Oa21_radiance', |
|
) |
|
all_band_scale = ( |
|
0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161, |
|
0.00876539,0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512, |
|
0.00526779,0.00530267,0.00493004,0.00549962,0.00502847,0.00326378,0.00324118) |
|
rgb_bands = ('Oa08_radiance', 'Oa06_radiance', 'Oa04_radiance') |
|
|
|
LC100_CLSID = { |
|
0: 0, |
|
20: 1, |
|
30: 2, |
|
40: 3, |
|
50: 4, |
|
60: 5, |
|
70: 6, |
|
80: 7, |
|
90: 8, |
|
100: 9, |
|
111: 10, |
|
112: 11, |
|
113: 12, |
|
114: 13, |
|
115: 14, |
|
116: 15, |
|
121: 16, |
|
122: 17, |
|
123: 18, |
|
124: 19, |
|
125: 20, |
|
126: 21, |
|
200: 22, |
|
} |
|
|
|
|
|
def __init__( |
|
self, |
|
root: Path = 'data', |
|
split: str = 'train', |
|
bands: Sequence[str] = all_band_names, |
|
mode = 'static', |
|
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, |
|
download: bool = False, |
|
) -> None: |
|
|
|
self.root = root |
|
self.transforms = transforms |
|
self.download = download |
|
|
|
|
|
assert split in ['train', 'val', 'test'] |
|
|
|
self.bands = bands |
|
self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names] |
|
|
|
self.mode = mode |
|
self.img_dir = os.path.join(self.root, 's3_olci') |
|
|
|
self.label_dir = os.path.join(self.root, 'lc100') |
|
|
|
if self.mode == 'static': |
|
self.static_csv = os.path.join(self.root, self.static_filenames[split]) |
|
with open(self.static_csv, 'r') as f: |
|
lines = f.readlines() |
|
self.static_img = {} |
|
for line in lines: |
|
pid = line.strip().split(',')[0] |
|
img_fname = line.strip().split(',')[1] |
|
self.static_img[pid] = img_fname |
|
|
|
self.pids = list(self.static_img.keys()) |
|
|
|
self.reference_date = date(1970, 1, 1) |
|
self.patch_area = (16*10/1000)**2 |
|
|
|
def __len__(self): |
|
return len(self.pids) |
|
|
|
def __getitem__(self, index): |
|
|
|
images, meta_infos = self._load_image(index) |
|
|
|
label = self._load_target(index) |
|
if self.mode == 'static': |
|
sample = {'image': images[0], 'mask': label, 'meta': meta_infos[0]} |
|
elif self.mode == 'series': |
|
sample = {'image': images, 'mask': label, 'meta': meta_infos} |
|
|
|
if self.transforms is not None: |
|
sample = self.transforms(sample) |
|
|
|
return sample |
|
|
|
|
|
def _load_image(self, index): |
|
|
|
pid = self.pids[index] |
|
s3_path = os.path.join(self.img_dir, pid) |
|
if self.mode == 'static': |
|
img_fname = self.static_img[pid] |
|
s3_paths = [os.path.join(s3_path, img_fname)] |
|
else: |
|
img_fnames = os.listdir(s3_path) |
|
s3_paths = [] |
|
for img_fname in img_fnames: |
|
s3_paths.append(os.path.join(s3_path, img_fname)) |
|
|
|
imgs = [] |
|
img_paths = [] |
|
meta_infos = [] |
|
for img_path in s3_paths: |
|
with rasterio.open(img_path) as src: |
|
img = src.read() |
|
img[np.isnan(img)] = 0 |
|
chs = [] |
|
for b in range(21): |
|
ch = img[b]*self.all_band_scale[b] |
|
|
|
ch = cv2.resize(ch, (282,282), interpolation=cv2.INTER_CUBIC) |
|
chs.append(ch) |
|
img = np.stack(chs) |
|
img = torch.from_numpy(img).float() |
|
|
|
|
|
cx,cy = src.xy(src.height // 2, src.width // 2) |
|
if src.crs.to_string() != 'EPSG:4326': |
|
|
|
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True) |
|
lon, lat = crs_transformer.transform(cx,cy) |
|
else: |
|
lon, lat = cx, cy |
|
|
|
img_fname = os.path.basename(img_path) |
|
date_str = img_fname.split('_')[1][:8] |
|
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8])) |
|
delta = (date_obj - self.reference_date).days |
|
meta_info = np.array([lon, lat, delta, self.patch_area]).astype(np.float32) |
|
meta_info = torch.from_numpy(meta_info) |
|
|
|
imgs.append(img) |
|
img_paths.append(img_path) |
|
meta_infos.append(meta_info) |
|
|
|
if self.mode == 'series': |
|
|
|
while len(imgs) < 4: |
|
imgs.append(img) |
|
img_paths.append(img_path) |
|
meta_infos.append(meta_info) |
|
|
|
return imgs, meta_infos |
|
|
|
def _load_target(self, index): |
|
|
|
pid = self.pids[index] |
|
label_path = os.path.join(self.label_dir, pid+'.tif') |
|
|
|
with rasterio.open(label_path) as src: |
|
label = src.read(1) |
|
label = cv2.resize(label, (282,282), interpolation=cv2.INTER_NEAREST) |
|
label_new = np.zeros_like(label) |
|
for k,v in self.LC100_CLSID.items(): |
|
label_new[label==k] = v |
|
labels = torch.from_numpy(label_new.astype('int64')) |
|
|
|
return labels |
|
|
|
|
|
|
|
class SegDataAugmentation(torch.nn.Module): |
|
def __init__(self, split, size): |
|
super().__init__() |
|
|
|
mean = torch.Tensor([0.0]) |
|
std = torch.Tensor([1.0]) |
|
|
|
self.norm = K.augmentation.Normalize(mean=mean, std=std) |
|
|
|
if split == "train": |
|
self.transform = K.augmentation.AugmentationSequential( |
|
K.augmentation.Resize(size=size, align_corners=True), |
|
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True), |
|
K.augmentation.RandomHorizontalFlip(p=0.5), |
|
K.augmentation.RandomVerticalFlip(p=0.5), |
|
data_keys=["input", "mask"], |
|
) |
|
else: |
|
self.transform = K.augmentation.AugmentationSequential( |
|
K.augmentation.Resize(size=size, align_corners=True), |
|
data_keys=["input", "mask"], |
|
) |
|
|
|
@torch.no_grad() |
|
def forward(self, batch: dict[str,]): |
|
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" |
|
x,mask = batch["image"], batch["mask"] |
|
x = self.norm(x) |
|
x_out, mask_out = self.transform(x, mask) |
|
return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"] |
|
|
|
|
|
class SenBenchLC100S3SegDataset: |
|
def __init__(self, config): |
|
self.dataset_config = config |
|
self.img_size = (config.image_resolution, config.image_resolution) |
|
self.root_dir = config.data_path |
|
self.bands = config.band_names |
|
self.mode = config.mode |
|
|
|
def create_dataset(self): |
|
train_transform = SegDataAugmentation(split="train", size=self.img_size) |
|
eval_transform = SegDataAugmentation(split="test", size=self.img_size) |
|
|
|
dataset_train = SenBenchLC100S3Seg( |
|
root=self.root_dir, split="train", bands=self.bands, mode=self.mode, transforms=train_transform |
|
) |
|
dataset_val = SenBenchLC100S3Seg( |
|
root=self.root_dir, split="val", bands=self.bands, mode=self.mode, transforms=eval_transform |
|
) |
|
dataset_test = SenBenchLC100S3Seg( |
|
root=self.root_dir, split="test", bands=self.bands, mode=self.mode, transforms=eval_transform |
|
) |
|
|
|
return dataset_train, dataset_val, dataset_test |