|
import kornia as K |
|
import torch |
|
from torchgeo.datasets import CloudCoverDetection |
|
from typing import ClassVar |
|
from collections.abc import Callable, Sequence |
|
from torch import Tensor |
|
from datetime import date |
|
import os |
|
import pandas as pd |
|
import numpy as np |
|
import rasterio |
|
from pyproj import Transformer |
|
from typing import TypeAlias |
|
Path: TypeAlias = str | os.PathLike[str] |
|
|
|
class SenBenchCloudS2(CloudCoverDetection): |
|
url = None |
|
all_bands = ('B02', 'B03', 'B04', 'B08') |
|
splits: ClassVar[dict[str, str]] = {'train': 'public', 'val': 'private', 'test': 'private'} |
|
|
|
def __init__( |
|
self, |
|
root: Path = 'data', |
|
split: str = 'train', |
|
bands: Sequence[str] = all_bands, |
|
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, |
|
download: bool = False, |
|
) -> None: |
|
|
|
|
|
assert split in self.splits |
|
assert set(bands) <= set(self.all_bands) |
|
|
|
self.root = root |
|
self.split = split |
|
self.bands = bands |
|
self.transforms = transforms |
|
self.download = download |
|
|
|
self.csv = os.path.join(self.root, self.split, f'{self.split}_metadata.csv') |
|
self._verify() |
|
|
|
self.metadata = pd.read_csv(self.csv) |
|
|
|
self.reference_date = date(1970, 1, 1) |
|
self.patch_area = (16*10)**2 |
|
|
|
def __getitem__(self, index: int) -> dict[str, Tensor]: |
|
"""Returns a sample from dataset. |
|
|
|
Args: |
|
index: index to return |
|
|
|
Returns: |
|
data, metadata (lon,lat,days,area) and label at given index |
|
""" |
|
chip_id = self.metadata.iat[index, 0] |
|
date_str = self.metadata.iat[index, 2] |
|
date_obj = date(int(date_str[:4]), int(date_str[5:7]), int(date_str[8:10])) |
|
delta = (date_obj - self.reference_date).days |
|
|
|
image, coord = self._load_image(chip_id) |
|
label = self._load_target(chip_id) |
|
|
|
meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32) |
|
|
|
sample = {'image': image, 'mask': label, 'meta': torch.from_numpy(meta_info)} |
|
|
|
if self.transforms is not None: |
|
sample = self.transforms(sample) |
|
|
|
|
|
|
|
|
|
return sample |
|
|
|
def _load_image(self, chip_id: str) -> Tensor: |
|
"""Load all source images for a chip. |
|
|
|
Args: |
|
chip_id: ID of the chip. |
|
|
|
Returns: |
|
a tensor of stacked source image data, coord (lon,lat) |
|
""" |
|
path = os.path.join(self.root, self.split, f'{self.split}_features', chip_id) |
|
images = [] |
|
coords = None |
|
for band in self.bands: |
|
with rasterio.open(os.path.join(path, f'{band}.tif')) as src: |
|
images.append(src.read(1).astype(np.float32)) |
|
if coords is None: |
|
cx,cy = src.xy(src.height // 2, src.width // 2) |
|
if src.crs.to_string() != 'EPSG:4326': |
|
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True) |
|
lon, lat = crs_transformer.transform(cx,cy) |
|
else: |
|
lon, lat = cx, cy |
|
|
|
return torch.from_numpy(np.stack(images, axis=0)), (lon,lat) |
|
|
|
|
|
|
|
class SegDataAugmentation(torch.nn.Module): |
|
def __init__(self, split, size): |
|
super().__init__() |
|
|
|
mean = torch.Tensor([0.0]) |
|
std = torch.Tensor([1.0]) |
|
|
|
self.norm = K.augmentation.Normalize(mean=mean, std=std) |
|
|
|
if split == "train": |
|
self.transform = K.augmentation.AugmentationSequential( |
|
K.augmentation.Resize(size=size, align_corners=True), |
|
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True), |
|
K.augmentation.RandomHorizontalFlip(p=0.5), |
|
K.augmentation.RandomVerticalFlip(p=0.5), |
|
data_keys=["input", "mask"], |
|
) |
|
else: |
|
self.transform = K.augmentation.AugmentationSequential( |
|
K.augmentation.Resize(size=size, align_corners=True), |
|
data_keys=["input", "mask"], |
|
) |
|
|
|
@torch.no_grad() |
|
def forward(self, batch: dict[str,]): |
|
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" |
|
x,mask = batch["image"], batch["mask"] |
|
x = self.norm(x) |
|
x_out, mask_out = self.transform(x, mask) |
|
return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"] |
|
|
|
class SenBenchCloudS2Dataset: |
|
def __init__(self, config): |
|
self.dataset_config = config |
|
self.img_size = (config.image_resolution, config.image_resolution) |
|
self.root_dir = config.data_path |
|
|
|
def create_dataset(self): |
|
train_transform = SegDataAugmentation(split="train", size=self.img_size) |
|
eval_transform = SegDataAugmentation(split="test", size=self.img_size) |
|
|
|
dataset_train = SenBenchCloudS2( |
|
root=self.root_dir, split="train", transforms=train_transform |
|
) |
|
dataset_val = SenBenchCloudS2( |
|
root=self.root_dir, split="val", transforms=eval_transform |
|
) |
|
dataset_test = SenBenchCloudS2( |
|
root=self.root_dir, split="test", transforms=eval_transform |
|
) |
|
|
|
return dataset_train, dataset_val, dataset_test |