Datasets:
Enhance dataset card: Add descriptive tags and detailed sample usage (#3)
Browse files- Enhance dataset card: Add descriptive tags and detailed sample usage (e8f963ed1cdd0305e240705e4bf5333b2a61c60b)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
---
|
|
|
2 |
task_categories:
|
3 |
- image-to-3d
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
# Pixie Dataset
|
@@ -20,13 +26,25 @@ This dataset contains data and pre-trained models for the paper [Pixie: Fast and
|
|
20 |
|
21 |
## Sample Usage
|
22 |
|
23 |
-
|
24 |
|
25 |
```bash
|
26 |
python scripts/download_data.py
|
27 |
```
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Citation
|
32 |
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
task_categories:
|
4 |
- image-to-3d
|
5 |
+
tags:
|
6 |
+
- 3d-physics
|
7 |
+
- material-properties
|
8 |
+
- gaussian-splatting
|
9 |
+
- clip-features
|
10 |
+
- 3d-assets
|
11 |
---
|
12 |
|
13 |
# Pixie Dataset
|
|
|
26 |
|
27 |
## Sample Usage
|
28 |
|
29 |
+
First, use the download script in the Pixie repository to automatically download this data and models:
|
30 |
|
31 |
```bash
|
32 |
python scripts/download_data.py
|
33 |
```
|
34 |
|
35 |
+
Then, you can run the main pipeline with a synthetic Objaverse object, for example:
|
36 |
+
|
37 |
+
```python
|
38 |
+
python pipeline.py obj_id=f420ea9edb914e1b9b7adebbacecc7d8 material_mode=neural
|
39 |
+
```
|
40 |
+
This command will:
|
41 |
+
1. Download the specified Objaverse asset.
|
42 |
+
2. Render it and train 3D representations (NeRF, Gaussian Splatting).
|
43 |
+
3. Generate a voxel feature grid.
|
44 |
+
4. Use the trained neural networks to predict the physics field.
|
45 |
+
5. Run the MPM physics solver using the predicted physics parameters.
|
46 |
+
|
47 |
+
For more detailed usage, including real-scene processing and training, refer to the [Github repository's usage section](https://github.com/vlongle/pixie#usage).
|
48 |
|
49 |
## Citation
|
50 |
|