# LAVN Dataset ### Data Organization After downloading and unzipping the zip files, please reorganize the files in the following tructure: ``` LAVN |--src |--makeData_virtual.py |--makeData_real.py ... |--Virtual |--Gibson |--traj_ |--worker_graph.json |--rgb_.jpg |--depth_.jpg |--traj_Ackermanville |--worker_graph.json |--rgb_00001.jpg |--rgb_00002.jpg ... |--depth_00001.jpg |--depth_00002.jpg ... ... |--Matterport |--traj_ |--worker_graph.json |--rgb_.jpg |--depth_.jpg |--traj_00000-kfPV7w3FaU5 |--worker_graph.json |--rgb_00001.jpg |--rgb_00002.jpg ... |--depth_00001.jpg |--depth_00002.jpg ... ... |--Real |--Campus |--worker_graph.json |--traj_480p_ |--rgb_.jpg |--traj_480p_scene00 |--rgb_00001.jpg ``` where the main landmark annotation scripts ```makeData_virtual.py``` and ```makeData_real.py``` are in folder (1) ```src```. (2) ```Virtual``` and (3) ```Real``` stores trajectories collecetd in the simulation and real world, respectively. In each trajectory's data is collected in the following format: ``` |--traj_ |--worker_graph.json |--rgb_.jpg |--depth_.jpg ``` where `````` matches exactly the original one in [Gibson](https://github.com/StanfordVL/GibsonEnv/blob/master/gibson/data/README.md) and [Matterport](https://aihabitat.org/datasets/hm3d/) run by the photo-realistic simulator [Habitat](https://github.com/facebookresearch/habitat-sim). Images are saved in either ```.jpg``` or ```.png``` format. Note that ```rgb``` images are the main visual representation while ```depth``` is the auxiliary visual information captured only in the virtual environment. ```worker_graph.json``` stores the meta data in dictionary in Python saved in ```json``` file with the following format: ``` {"node": {"img_path": "./human_click_dataset/traj_/rgb_.jpg", "depth_path": "./human_click_dataset/traj_/depth_.png", "location": [, , ], "orientation": , "click_point": [, ], "reason": ""}, ... "node0": {"img_path": "./human_click_dataset/traj_00101-n8AnEznQQpv/rgb_00002.jpg", "depth_path": "./human_click_dataset/traj_00101-n8AnEznQQpv/depth_00002.jpg", "location": [0.7419548034667969, -2.079209327697754, -0.5635206699371338], "orientation": 0.2617993967423121, "click_point": [270, 214], "reason": ""} ... "edges":... "goal_location": null, "start_location": [, , ], "landmarks": [[[, ], ], ...], "actions": ["ACTION_NAME", "turn_right", "move_forward", "turn_right", ...] "env_name": } ``` where ```[, , ]``` is the 3-axis location vector, `````` is the orientation only in simulation. ```[, ]``` are the image coordinates of landmarks. ```ACTION_NAME``` stores the action of the robot take from the current frame to the next frame. ### Long-Term Maintenance Plan We will conduct a long-term maintenance plan to ensure the accessability and quality for future research: **Data Standards**: Data formats will be checked regularly with scripts to validate data consistency. **Data Cleaning**: Data in incorrect formats, missing data or contains invalid values will be removed. **Scheduled Updates**: We set up montly schedule for data updates. **Storage Solutions**: Zenodo with a DOI will be provided to as an public repository for online storage. A second copy will be stored in a private cloud server while a third copy will be stored in a local drive. **Data Backup**: Once one of the copies in the aforementioned storage approach is detected inaccessible, it will be restored by one of the other two copies immediately. **Documentation**: Our documentation will be updated regularly reflecting feedback from users.