import torch from datasets import load_dataset from sentence_transformers import SentenceTransformer import math ON_JZ = False DATASET_NAME = ( "./data_dir/nomic_embed_supervised" if ON_JZ else "jxm/nomic_embed_supervised" ) MODEL_NAME = "./models/modernbert-embed-base" if ON_JZ else "intfloat/e5-base-v2" if ON_JZ: dataset = load_dataset(DATASET_NAME, split="train") else: dataset = load_dataset( DATASET_NAME, split="train[:2000]", data_files=["data/train-00000-of-00116.parquet"], verification_mode="no_checks", ) # map query column to an embedding # model = SentenceTransformer('nomic-ai/modernbert-embed-base') model = SentenceTransformer(MODEL_NAME) # map query column to an embedding def map_to_embedding(example): example["query_embedding"] = model.encode(example["query"]) example["document_embedding"] = model.encode(example["document"]) return example # apparently this prevents the dataset from getting cached # dataset = dataset.remove_columns(["negative", "dataset"]) dataset = dataset.map(map_to_embedding, batched=True, batch_size=128) # remove negative and dataset column print(dataset) print(dataset[0]) from cde_benchmark.utils.faiss_clustering import paired_kmeans_faiss q = torch.Tensor(dataset["query_embedding"]) X = torch.Tensor(dataset["document_embedding"]) cluster_size = 1024 k = math.ceil(len(X) / cluster_size) print(k) max_iters = 100 centroids, assignments = paired_kmeans_faiss(q=q, X=X, k=k, max_iters=max_iters) # flatten assignments assignments = list(assignments.flatten()) print(assignments) # add these assignments to the dataset dataset = dataset.add_column("cluster_assignment", assignments) print(dataset) # save dataset dataset.save_to_disk("./data_dir/nomic_embed_supervised_clustered")