import gradio as gr import json from huggingface_hub import HfApi import pandas as pd def compute_df(): api = HfApi() # download all files in https://huggingface.co/illuin-cde/baselines files = [ f for f in api.list_repo_files("illuin-cde/baselines-v2") if f.startswith("metrics") ] print(files) metrics = [] cols = ["model", "is_contextual"] for file in files: result_path = api.hf_hub_download("illuin-cde/baselines-v2", filename=file) with open(result_path, "r") as f: dic = json.load(f) metrics_cur = dic["metrics"] for k, v in metrics_cur.items(): dic.update({k: v["ndcg_at_5"]}) cols.append(k) del dic["metrics"] metrics.append(dic) df = pd.DataFrame(metrics) df = df[cols] df["model"] = df["model"].apply(lambda x: x.split("/")[-1]) # round all numeric columns # avg all numeric columns df["avg"] = df.iloc[:, 2:].mean(axis=1) df = df.round(3) # sort by ndcg_at_5 df = df.sort_values(by="avg", ascending=False) # gradio display gradio_df = gr.Dataframe(df) return gradio_df # refresh button and precompute gr.Interface( fn=compute_df, title="Results Leaderboard", inputs=None, outputs="dataframe" ).launch()