from tqdm import tqdm from sentence_transformers import SentenceTransformer from cde_benchmark.embedders.base_embedder import Embedder class NaiveContextualEmbedder(Embedder): def __init__( self, model: SentenceTransformer = None, batch_size: int = 16, show_progress_bar: bool = True, ): super().__init__(is_contextual_model=True) self.model: SentenceTransformer = model self.show_progress_bar = show_progress_bar self.batch_size = batch_size def embed_queries(self, queries): return self.model.encode( queries, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, ) def embed_documents(self, documents): # documents is a list of list of documents # This is just for the demo, but here it's not contextual at all embeddings = [] for document in tqdm(documents): embeddings.append( self.model.encode( document, show_progress_bar=False, batch_size=self.batch_size, ) ) return embeddings