from typing import Dict import torch from cde_benchmark.formatters.data_formatter import BaseDataFormatter from cde_benchmark.evaluators.eval_utils import CustomRetrievalEvaluator class Embedder: def __init__( self, is_contextual_model: bool = False, ): self.is_contextual_model = is_contextual_model self.evaluator = CustomRetrievalEvaluator() def embed_queries(self, queries): raise NotImplementedError def embed_documents(self, documents): raise NotImplementedError def process_queries(self, data_formatter): queries, document_ids = data_formatter.get_queries() query_embeddings = self.embed_queries(queries) # make into a contiguous tensor, and map position to document_ids return query_embeddings, document_ids def process_documents(self, data_formatter): if self.is_contextual_model: documents, document_ids = data_formatter.get_nested() # embed documents in contextual models receive a list of list of documents and should return embeddings in the same shape doc_embeddings = self.embed_documents(documents) # flatten document_ids = [id_ for nested_ids in document_ids for id_ in nested_ids] doc_embeddings = [ embed_ for nested_embeds in doc_embeddings for embed_ in nested_embeds ] else: documents, document_ids = data_formatter.get_flattened() doc_embeddings = self.embed_documents(documents) # make into a contiguous tensor, and map position to document_ids return doc_embeddings, document_ids def get_similarities(self, query_embeddings, doc_embeddings): # convert to torch tensors and compute similarity with dot product query_embeddings = torch.tensor(query_embeddings) doc_embeddings = torch.tensor(doc_embeddings) scores = torch.mm(query_embeddings, doc_embeddings.t()) return scores def get_metrics(self, scores, all_document_ids, label_documents_id): # scores are a list of list of scores (or 2D tensor) # label_document_ids are a list of document ids corresponding to the true label # all_document_ids are a list of all document ids in the same order as the scores assert scores.shape[1] == len(all_document_ids) assert scores.shape[0] == len(label_documents_id) assert set(label_documents_id).issubset(set(all_document_ids)) relevant_docs = {} for idx, label in enumerate(label_documents_id): relevant_docs[str(idx)] = {label: 1} results = {} for idx, scores_per_query in enumerate(scores): results[str(idx)] = { str(doc_id): score.item() for doc_id, score in zip(all_document_ids, scores_per_query) } metrics: Dict[str, float] = self.evaluator.compute_mteb_metrics( relevant_docs, results ) return metrics def compute_metrics_e2e(self, data_formatter): queries_embeddings, label_ids = self.process_queries(data_formatter) documents_embeddings, all_doc_ids = self.process_documents(data_formatter) scores = self.get_similarities(queries_embeddings, documents_embeddings) metrics = self.get_metrics(scores, all_doc_ids, label_ids) return metrics