import gradio as gr | |
import json | |
from huggingface_hub import HfApi | |
import pandas as pd | |
def compute_df(): | |
api = HfApi() | |
# download all files in https://huggingface.co/illuin-cde/baselines | |
files = [ | |
f | |
for f in api.list_repo_files("illuin-cde/baselines") | |
if f.startswith("metrics") | |
] | |
print(files) | |
metrics = [] | |
for file in files: | |
result_path = api.hf_hub_download("illuin-cde/baselines", filename=file) | |
with open(result_path, "r") as f: | |
dic = json.load(f) | |
dic.update(dic["metrics"]) | |
del dic["metrics"] | |
metrics.append(dic) | |
df = pd.DataFrame(metrics) | |
df = df[ | |
[ | |
"model", | |
"dataset", | |
"split", | |
"is_contextual", | |
"ndcg_at_1", | |
"ndcg_at_5", | |
"ndcg_at_10", | |
"ndcg_at_100", | |
] | |
] | |
df["model"] = df["model"].apply(lambda x: x.split("/")[-1]) | |
df["dataset"] = df["dataset"].apply(lambda x: x.split("/")[-1]) | |
# round all numeric columns | |
df = df.round(3) | |
# sort by ndcg_at_5 | |
df = df.sort_values("ndcg_at_5", ascending=False) | |
# gradio display | |
gradio_df = gr.Dataframe(df) | |
return gradio_df | |
# refresh button and precompute | |
gr.Interface( | |
fn=compute_df, title="Results Leaderboard", inputs=None, outputs="dataframe" | |
).launch() | |