Target_Summary_ID
stringclasses 200
values | Target_Sentence_Index
stringlengths 4
7
| External
stringclasses 2
values | Target_Sentence
stringlengths 19
592
| Original_Abstract
stringclasses 200
values |
---|---|---|---|---|
t0 | t0_1 | yes | The skin patch and the vaginal (birth canal) ring are two methods of birth control. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_2 | yes | Both methods contain the hormones estrogen and progestin. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_3 | yes | The patch is a small, thin, adhesive square that is applied to the skin. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_4 | yes | The contraceptive vaginal ring is a flexible, lightweight device that is inserted into the vagina. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_5 | yes | Both methods release drugs like those in birth control pills. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_6 | yes | These methods could be used more consistently than pills because they do not require a daily dose. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_7 | yes | This review looked at how well the methods worked to prevent pregnancy, if they caused bleeding problems, if women used them as prescribed, and how safe they were. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_8 | no | Through February 2013, we did computer searches for randomized controlled trials of the skin patch or vaginal ring compared to pills for birth control. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_9 | yes | Pills included types with both estrogen and progestin. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_10 | no | We wrote to researchers to find other trials. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_11 | no | We found 18 trials. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_12 | no | Of six patch trials, five compared the marketed patch to birth control pills and one studied a patch being developed. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_13 | no | Of 12 ring trials, 11 looked at the marketed ring and pills while one studied a ring being developed. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_14 | yes | The methods compared had similar pregnancy rates. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_15 | no | Patch users reported using their method more consistently than the pill group did. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_16 | yes | Only half of the patch studies had data on pregnancy or whether the women used the method correctly. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_17 | yes | However, most of the ring studies had those data. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_18 | no | Patch users were more likely than pill users to drop out early from the trial. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_19 | no | Ring users were not more likely to drop out early. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_20 | no | Compared to pill users, users of the marketed patch had more breast discomfort, painful periods, nausea, and vomiting. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_21 | no | Ring users had more vaginal irritation and discharge than pill users but less nausea, acne, irritability, depression, and emotional changes. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_22 | yes | Ring users often had fewer bleeding problems than pill users. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_23 | yes | The quality of information was classed as low for the patch trials and moderate for the ring studies. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_24 | yes | Lower quality was due to not reporting how groups were assigned or not having good outcome measures. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_25 | no | Other issues were high losses and taking assigned women out of the analysis. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t0 | t0_26 | yes | Studies of the patch and ring should provide more detail on whether women used the method correctly. | The delivery of combination contraceptive steroids from a transdermal contraceptive patch or a contraceptive vaginal ring offers potential advantages over the traditional oral route. The transdermal patch and vaginal ring could require a lower dose due to increased bioavailability and improved user compliance. Objectives To compare the contraceptive effectiveness, cycle control, compliance (adherence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives (COCs). Search methods Through February 2013, we searched MEDLINE, POPLINE, CENTRAL, LILACS, ClinicalTrials.gov, and ICTRP for trials of the contraceptive patch or the vaginal ring. Earlier searches also included EMBASE. For the initial review, we contacted known researchers and manufacturers to identify other trials. Selection criteria We considered randomized controlled trials comparing a transdermal contraceptive patch or a contraceptive vaginal ring with a COC. Data collection and analysis Data were abstracted by two authors and entered into RevMan. For dichotomous variables, the Peto odds ratio (OR) with 95% confidence intervals (CI) was calculated. For continuous variables, the mean difference was computed. We also assessed the quality of evidence for this review. We found 18 trials that met our inclusion criteria. Of six patch studies, five examined the marketed patch containing norelgestromin plus ethinyl estradiol (EE); one studied a patch in development that contains levonorgestrel (LNG) plus EE. Of 12 vaginal ring trials, 11 examined the same marketing ring containing etonogestrel plus EE; one studied a ring being developed that contains nesterone plus EE. Contraceptive effectiveness was not significantly different for the patch or ring versus the comparison COC. Compliance data were limited. Patch users showed better compliance than COC users in three trials. For the norelgestromin plus EE patch, ORs were 2.05 (95% CI 1.83 to 2.29) and 2.76 (95% CI 2.35 to 3.24). In the levonorgestrel plus EE patch report, patch users were less likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68). More patch users discontinued early than COC users. ORs from two meta‐analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin‐containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel‐containing patch trial, patch users reported less vomiting, headaches, and fatigue. Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users. For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two‐thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one‐third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than COC users but more vaginal irritation and discharge. The main reasons for downgrading were lack of information on the randomization sequence generation or allocation concealment, the outcome assessment methods, high losses to follow up, and exclusions after randomization. |
t1 | t1_1 | no | Excess body weight has become a health problem around the world. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_2 | no | Being overweight or obese may affect how well some birth control methods work to prevent pregnancy. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_3 | no | Hormonal birth control includes pills, the skin patch, the vaginal ring, implants, injectables, and hormonal intrauterine contraception (IUC). | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_4 | no | Until 4 August 2016, we did computer searches for studies of hormonal birth control among women who were overweight or obese. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_5 | yes | We looked for studies that compared overweight or obese women with women of normal weight or body mass index (BMI). | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_6 | yes | The formula for BMI is weight (kg) / height (m) 2 . | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_7 | no | We included all study designs. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_8 | no | For the original review, we wrote to investigators to find other studies we might have missed. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_9 | no | With 8 studies added in this update, we had 17 with a total of 63,813 women. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_10 | no | We focus here on 12 studies with high, moderate, or low quality results. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_11 | no | Most did not show more pregnancies for overweight or obese women. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_12 | no | Two of five studies using birth control pills found differences between BMI groups. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_13 | no | In one, overweight women had a higher pregnancy risk. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_14 | no | The other found a lower pregnancy rate for obese women versus nonobese women. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_15 | yes | The second study also tested a new skin patch. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_16 | no | Obese women in the patch group had a higher pregnancy rate. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_17 | no | Of five implant studies, two showed differences among weight groups. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_18 | yes | They studied the older six‐capsule implant. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_19 | yes | One study showed a higher pregnancy rate in years 6 and 7 combined for women weighing 70 kg or more. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_20 | no | The other reported pregnancy differences in year 5 among the lower weight groups only. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_21 | no | Results for other methods of birth control did not show overweight or obesity related to pregnancy rate. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_22 | yes | Those methods included an injectable, hormonal IUC, and the two‐rod and single‐rod implants. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_23 | no | These studies generally did not show an association of BMI or weight with the effect of hormonal methods. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_24 | no | We found few studies for most methods. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_25 | no | Studies using BMI rather than weight can show whether body fat is related to how well birth control prevents pregnancy. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t1 | t1_26 | no | The methods studied here work very well when used according to directions. | Obesity has reached epidemic proportions around the world. Effectiveness of hormonal contraceptives may be related to metabolic changes in obesity or to greater body mass or body fat. Hormonal contraceptives include oral contraceptives (OCs), injectables, implants, hormonal intrauterine contraception (IUC), the transdermal patch, and the vaginal ring. Given the prevalence of overweight and obesity, the public health impact of any effect on contraceptive efficacy could be substantial. Objectives To examine the effectiveness of hormonal contraceptives in preventing pregnancy among women who are overweight or obese versus women with a lower body mass index (BMI) or weight. Search methods Until 4 August 2016, we searched for studies in PubMed (MEDLINE), CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. We examined reference lists of pertinent articles to identify other studies. For the initial review, we wrote to investigators to find additional published or unpublished studies. Selection criteria All study designs were eligible. The study could have examined any type of hormonal contraceptive. Reports had to contain information on the specific contraceptive methods used. The primary outcome was pregnancy. Overweight or obese women must have been identified by an analysis cutoff for weight or BMI (kg/m 2 ). Data collection and analysis Two authors independently extracted the data. One entered the data into RevMan and a second verified accuracy. The main comparisons were between overweight or obese women and women of lower weight or BMI. We examined the quality of evidence using the Newcastle‐Ottawa Quality Assessment Scale. Where available, we included life‐table rates. We also used unadjusted pregnancy rates, relative risk (RR), or rate ratio when those were the only results provided. For dichotomous variables, we computed an odds ratio with 95% confidence interval (CI). With 8 studies added in this update, 17 met our inclusion criteria and had a total of 63,813 women. We focus here on 12 studies that provided high, moderate, or low quality evidence. Most did not show a higher pregnancy risk among overweight or obese women. Of five COC studies, two found BMI to be associated with pregnancy but in different directions. With an OC containing norethindrone acetate and ethinyl estradiol (EE), pregnancy risk was higher for overweight women, i.e. with BMI ≥ 25 versus those with BMI < 25 (reported relative risk 2.49, 95% CI 1.01 to 6.13). In contrast, a trial using an OC with levonorgestrel and EE reported a Pearl Index of 0 for obese women (BMI ≥ 30) versus 5.59 for nonobese women (BMI < 30). The same trial tested a transdermal patch containing levonorgestrel and EE. Within the patch group, obese women in the "treatment‐compliant" subgroup had a higher reported Pearl Index than nonobese women (4.63 versus 2.15). Of five implant studies, two that examined the six‐capsule levonorgestrel implant showed differences in pregnancy by weight. One study showed higher weight was associated with higher pregnancy rate in years 6 and 7 combined (reported P < 0.05). In the other, pregnancy rates differed in year 5 among the lower weight groups only (reported P < 0.01) and did not involve women weighing 70 kg or more. Analysis of data from other contraceptive methods indicated no association of pregnancy with overweight or obesity. These included depot medroxyprogesterone acetate (subcutaneous), levonorgestrel IUC, the two‐rod levonorgestrel implant, and the etonogestrel implant. The evidence generally did not indicate an association between higher BMI or weight and effectiveness of hormonal contraceptives. However, we found few studies for most contraceptive methods. Studies using BMI, rather than weight alone, can provide information about whether body composition is related to contraceptive effectiveness. The contraceptive methods examined here are among the most effective when used according to the recommended regimen. We considered the overall quality of evidence to be low for the objectives of this review. More recent reports provided evidence of varying quality, while the quality was generally low for older studies. For many trials the quality would be higher for their original purpose rather than the non‐randomized comparisons here. Investigators should consider adjusting for potential confounding related to BMI or contraceptive effectiveness. Newer studies included a greater proportion of overweight or obese women, which helps in examining effectiveness and side effects of hormonal contraceptives within those groups. |
t2 | t2_1 | no | Cluster headaches are excruciating headaches of extreme intensity. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_2 | yes | They can last for several hours, are usually on one side of the head only, and affect men more than women. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_3 | yes | Multiple headaches can occur over several days. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_4 | yes | Fast pain relief is important because of the intense nature of the pain with cluster headache. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_5 | no | Triptans are a type of drug used to treat migraine. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_6 | no | Although migraine is different from cluster headache, there are reasons to believe that some forms of these drugs could be useful in cluster headache. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_7 | no | Triptans can be given by injection under the skin (subcutaneously) or by a spray into the nose (intranasally) to produce fast pain relief. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_8 | no | The review found six studies examining two different triptans. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_9 | no | Within 15 minutes of using subcutaneous sumatriptan 6 mg, almost 8 in 10 participants had no worse than mild pain, and 5 in 10 were pain‐free. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_10 | no | Within 15 minutes of using intranasal zolmitriptan 5 mg, about 3 in 10 had no worse than mild pain, and 1 in 10 was pain‐free. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t2 | t2_11 | yes | Adverse events were more common with a triptan than with placebo but they were generally of mild to moderate severity. | This is an updated version of the original Cochrane review published in Issue 4, 2010 ( Law 2010 ). Cluster headache is an uncommon, severely painful, and disabling condition, with rapid onset. Validated treatment options are limited; first‐line therapy includes inhaled oxygen. Other therapies such as intranasal lignocaine and ergotamine are not as commonly used and are less well studied. Triptans are successfully used to treat migraine attacks and they may also be useful for cluster headache. Objectives To assess the efficacy and tolerability of the triptan class of drugs compared to placebo and other active interventions in the acute treatment of episodic and chronic cluster headache in adult patients. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, and reference lists for studies from inception to 22 January 2010 for the original review, and from 2009 to 4 April 2013 for this update. Selection criteria Randomised, double‐blind, placebo‐controlled studies of triptans for acute treatment of cluster headache episodes. Data collection and analysis Two review authors independently assessed study quality and extracted data. Numbers of participants with different levels of pain relief, requiring rescue medication, and experiencing adverse events and headache‐associated symptoms in treatment and control groups were used to calculate relative risk and numbers needed to treat for benefit (NNT) and harm (NNH). New searches in 2013 did not identify any relevant new studies. All six included studies used a single dose of triptan to treat an attack of moderate to severe pain intensity. Subcutaneous sumatriptan was given to 131 participants at a 6 mg dose, and 88 at a 12 mg dose. Oral or intranasal zolmitriptan was given to 231 participants at a 5 mg dose, and 223 at a 10 mg dose. Placebo was given to 326 participants. Triptans were more effective than placebo for headache relief and pain‐free responses. By 15 minutes after treatment with subcutaneous sumatriptan 6 mg, 48% of participants were pain‐free and 75% had no pain or mild pain (17% and 32% respectively with placebo). NNTs for subcutaneous sumatriptan 6 mg were 3.3 (95% CI 2.4 to 5.0) and 2.4 (1.9 to 3.2) respectively. Intranasal zolmitriptan 10 mg was of less benefit, with 12% of participants pain‐free and 28% with no or mild pain (3% and 7% respectively with placebo). NNTs for intranasal zolmitriptan 10 mg were 11 (6.4 to 49) and 4.9 (3.3 to 9.2) respectively. Based on limited data, subcutaneous sumatriptan 6 mg was superior to intranasal zolmitriptan 5 mg or 10 mg for rapid (15 minute) responses, which are important in this condition. Oral routes of administration are not appropriate. |
t3 | t3_1 | yes | Sugar‐sweetened beverages (SSBs) are cold and hot drinks with added sugar. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_2 | yes | Common SSBs are non‐diet soft drinks, regular soda, iced tea, sports drinks, energy drinks, fruit punches, sweetened waters, and sweetened tea and coffee. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_3 | no | Research shows that people who drink a lot of SSBs often gain weight. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_4 | no | Drinking a lot of SSBs can also increase the risk of diabetes, heart disease, and dental decay. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_5 | yes | Doctors therefore recommend that children, teenagers and adults drink fewer SSBs. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_6 | no | Governments, businesses, schools and workplaces have taken various measures to support healthier beverage choices. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_7 | no | We wanted to find out whether the measures taken so far have been successful in helping people to drink fewer SSBs to improve their health. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_8 | no | We focused on measures that change the environment in which people make beverage choices. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_9 | yes | We did not look at studies on educational programmes or on SSB taxes, as these are examined in separate reviews. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_10 | no | We searched for all available studies meeting clearly‐defined criteria to answer this question. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_11 | no | We found 58 studies, which included more than one million adults, teenagers and children. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_12 | no | Most studies lasted about one year, and were done in schools, stores or restaurants. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_13 | no | Some studies used methods that are not very reliable. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_14 | yes | For example, in some studies participants were simply asked how much SSB they drank, which is not very reliable, as people sometimes forget how much SSB they drank. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_15 | yes | Some of the findings of our review may therefore change when more and better studies become available. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_16 | no | We have found some evidence that some of the measures implemented to help people drink fewer SSBs have been successful, including the following: Labels which are easy to understand, such as traffic‐light labels, and labels which rate the healthfulness of beverages with stars or numbers. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_17 | no | Limits to the availability of SSB in schools (e.g. replacing SSBs with water in school cafeterias). | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_18 | no | Price increases on SSBs in restaurants, stores and leisure centres. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_19 | no | Children’s menus in chain restaurants which include healthier beverages as their standard beverage. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_20 | no | Promotion of healthier beverages in supermarkets. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_21 | no | Government food benefits (e.g. food stamps) which cannot be used to buy SSBs. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_22 | no | Community campaigns focused on SSBs. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_23 | yes | Measures that improve the availability of low‐calorie beverages at home, e.g. through home deliveries of bottled water and diet beverages. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_24 | yes | We have also found some evidence that improved availability of drinking water and diet beverages at home can help people lose weight. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_25 | no | There are also other measures which may influence how much SSB people drink, but for these the available evidence is less certain. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_26 | no | Some, but not all studies found that such measures can have effects which were not intended and which may be negative. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_27 | yes | Some studies reported that profits of stores and restaurants decreased when the measures were implemented, but other studies showed that profits increased or stayed the same. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_28 | yes | Children who get free drinking water in schools may drink less milk. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_29 | no | Some studies reported that people were unhappy with the measures. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_30 | no | We also looked at studies on sugar‐sweetened milk. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_31 | no | We found that small prizes for children who chose plain milk in their school cafeteria, as well as emoticon labels, may help children drink less sugar‐sweetened milk. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_32 | yes | However, this may also drive up the share of milk which is wasted because children choose but do not drink it. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_33 | no | Our review shows that measures which change the environment in which people make beverage choices can help people drink less SSB. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_34 | no | Based on our findings we suggest that such measures may be used more widely. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t3 | t3_35 | no | Government officials, business people and health professionals implementing such measures should work together with researchers to find out more about their effects in the short and long term. | Frequent consumption of excess amounts of sugar‐sweetened beverages (SSB) is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries. Environmental interventions, i.e. interventions that alter the physical or social environment in which individuals make beverage choices, have been advocated as a means to reduce the consumption of SSB. Objectives To assess the effects of environmental interventions (excluding taxation) on the consumption of sugar‐sweetened beverages and sugar‐sweetened milk, diet‐related anthropometric measures and health outcomes, and on any reported unintended consequences or adverse outcomes. Search methods We searched 11 general, specialist and regional databases from inception to 24 January 2018. We also searched trial registers, reference lists and citations, scanned websites of relevant organisations, and contacted study authors. Selection criteria We included studies on interventions implemented at an environmental level, reporting effects on direct or indirect measures of SSB intake, diet‐related anthropometric measures and health outcomes, or any reported adverse outcome. We included randomised controlled trials (RCTs), non‐randomised controlled trials (NRCTs), controlled before‐after (CBA) and interrupted‐time‐series (ITS) studies, implemented in real‐world settings with a combined length of intervention and follow‐up of at least 12 weeks and at least 20 individuals in each of the intervention and control groups. We excluded studies in which participants were administered SSB as part of clinical trials, and multicomponent interventions which did not report SSB‐specific outcome data. We excluded studies on the taxation of SSB, as these are the subject of a separate Cochrane Review. Data collection and analysis Two review authors independently screened studies for inclusion, extracted data and assessed the risks of bias of included studies. We classified interventions according to the NOURISHING framework, and synthesised results narratively and conducted meta‐analyses for two outcomes relating to two intervention types. We assessed our confidence in the certainty of effect estimates with the GRADE framework as very low, low, moderate or high, and presented ‘Summary of findings’ tables. We identified 14,488 unique records, and assessed 1030 in full text for eligibility. We found 58 studies meeting our inclusion criteria, including 22 RCTs, 3 NRCTs, 14 CBA studies, and 19 ITS studies, with a total of 1,180,096 participants. The median length of follow‐up was 10 months. The studies included children, teenagers and adults, and were implemented in a variety of settings, including schools, retailing and food service establishments. We judged most studies to be at high or unclear risk of bias in at least one domain, and most studies used non‐randomised designs. The studies examine a broad range of interventions, and we present results for these separately. Labelling interventions (8 studies): We found moderate‐certainty evidence that traffic‐light labelling is associated with decreasing sales of SSBs, and low‐certainty evidence that nutritional rating score labelling is associated with decreasing sales of SSBs. For menu‐board calorie labelling reported effects on SSB sales varied. Nutrition standards in public institutions (16 studies): We found low‐certainty evidence that reduced availability of SSBs in schools is associated with decreased SSB consumption. We found very low‐certainty evidence that improved availability of drinking water in schools and school fruit programmes are associated with decreased SSB consumption. Reported associations between improved availability of drinking water in schools and student body weight varied. Economic tools (7 studies): We found moderate‐certainty evidence that price increases on SSBs are associated with decreasing SSB sales. For price discounts on low‐calorie beverages reported effects on SSB sales varied. Whole food supply interventions (3 studies): Reported associations between voluntary industry initiatives to improve the whole food supply and SSB sales varied. Retail and food service interventions (7 studies): We found low‐certainty evidence that healthier default beverages in children’s menus in chain restaurants are associated with decreasing SSB sales, and moderate‐certainty evidence that in‐store promotion of healthier beverages in supermarkets is associated with decreasing SSB sales. We found very low‐certainty evidence that urban planning restrictions on new fast‐food restaurants and restrictions on the number of stores selling SSBs in remote communities are associated with decreasing SSB sales. Reported associations between promotion of healthier beverages in vending machines and SSB intake or sales varied. Intersectoral approaches (8 studies): We found moderate‐certainty evidence that government food benefit programmes with restrictions on purchasing SSBs are associated with decreased SSB intake. For unrestricted food benefit programmes reported effects varied. We found moderate‐certainty evidence that multicomponent community campaigns focused on SSBs are associated with decreasing SSB sales. Reported associations between trade and investment liberalisation and SSB sales varied. Home‐based interventions (7 studies): We found moderate‐certainty evidence that improved availability of low‐calorie beverages in the home environment is associated with decreased SSB intake, and high‐certainty evidence that it is associated with decreased body weight among adolescents with overweight or obesity and a high baseline consumption of SSBs. Adverse outcomes reported by studies, which may occur in some circumstances, included negative effects on revenue, compensatory SSB consumption outside school when the availability of SSBs in schools is reduced, reduced milk intake, stakeholder discontent, and increased total energy content of grocery purchases with price discounts on low‐calorie beverages, among others. The certainty of evidence on adverse outcomes was low to very low for most outcomes. We analysed interventions targeting sugar‐sweetened milk separately, and found low‐ to moderate‐certainty evidence that emoticon labelling and small prizes for the selection of healthier beverages in elementary school cafeterias are associated with decreased consumption of sugar‐sweetened milk. We found low‐certainty evidence that improved placement of plain milk in school cafeterias is not associated with decreasing sugar‐sweetened milk consumption. The evidence included in this review indicates that effective, scalable interventions addressing SSB consumption at a population level exist. Implementation should be accompanied by high‐quality evaluations using appropriate study designs, with a particular focus on the long‐term effects of approaches suitable for large‐scale implementation. |
t4 | t4_1 | yes | A baby may be in this situation because the placenta is no longer functioning well and this means the baby may be short of nutrition or oxygen. | Fetal compromise in the term pregnancy is suspected when the following clinical indicators are present: intrauterine growth restriction (IUGR), decreased fetal movement (DFM), or when investigations such as cardiotocography (CTG) and ultrasound reveal results inconsistent with standard measurements. Pathological results would necessitate the need for immediate delivery, but the management for ‘suspicious’ results remains unclear and varies widely across clinical centres. There is clinical uncertainty as to how to best manage women presenting with a suspected term compromised baby in an otherwise healthy pregnancy. Objectives To assess, using the best available evidence, the effects of immediate delivery versus expectant management of the term suspected compromised baby on neonatal, maternal and long‐term outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015) and reference lists of retrieved studies. Selection criteria Randomised or quasi‐randomised controlled trials comparing expectant management versus planned early delivery for women with a suspected compromised fetus from 37 weeks' gestation or more. Data collection and analysis Two review authors independently assessed trials for inclusion and assessed trial quality. Two review authors independently extracted data. Data were checked for accuracy. We assessed the quality of the evidence using the GRADE approach. Of the 20 reports identified by the search strategy, we included three trials (546 participants: 269 to early delivery and 277 to expectant management), which met our inclusion criteria. Two of the trials compared outcomes in 492 pregnancies with IUGR of the fetus, and one in 54 pregnancies with oligohydramnios. All three trials were of reasonable quality and at low risk of bias. The level of evidence was graded moderate, low or very low, downgrading mostly for imprecision and for some indirectness. Overall, there was no difference in the primary neonatal outcomes of perinatal mortality (no deaths in either group, one trial, 459 women, evidence graded moderate ), major neonatal morbidity (risk ratio (RR) 0.15, 95% confidence interval (CI) 0.01 to 2.81, one trial, 459 women, evidence graded low ), or neurodevelopmental disability/impairment at two years of age (RR 2.04, 95% CI 0.62 to 6.69,one trial, 459 women, evidence graded low ). There was no difference in the risk of necrotising enterocolitis (one trial, 333 infants) or meconium aspiration (one trial, 459 infants), There was also no difference in the reported primary maternal outcomes: maternal mortality (RR 3.07, 95% CI 0.13 to 74.87, one trial, 459 women, evidence graded low ), and significant maternal morbidity (RR 0.92, 95% CI 0.38 to 2.22, one trial, 459 women, evidence graded low ). The gestational age at birth was on average 10 days earlier in women randomised to early delivery (mean difference (MD) ‐9.50, 95% CI ‐10.82 to ‐8.18, one trial, 459 women) and women in the early delivery group were significantly less likely to have a baby beyond 40 weeks' gestation (RR 0.10, 95% CI 0.01 to 0.67, one trial, 33 women). Significantly more infants in the planned early delivery group were admitted to intermediate care nursery (RR 1.28, 95% CI 1.02 to 1.61, two trials, 491 infants). There was no difference in the risk of respiratory distress syndrome, (one trial, 333 infants), Apgar score less than seven at five minutes (three trials, 546 infants), resuscitation required (one trial, 459 infants), mechanical ventilation (one trial, 337 infants), admission to neonatal intensive care unit (NICU) (RR 0.88, 95% CI 0.35 to 2.23, three trials, 545 infants, evidence graded very low ), length of stay in NICU/SCN (one trial, 459 infants), and sepsis (two trials, 366 infants). Babies in the expectant management group were more likely to be < 2.3rd centile for birthweight (RR 0.51, 95% CI 0.36 to 0.73, two trials, 491 infants), however there was no difference in the proportion of babies with birthweight < 10th centile (RR 0.98, 95% CI 0.88 to 1.10). There was no difference in any of the reported maternal secondary outcomes including: caesarean section rates (RR 1.02, 95% CI 0.65 to 1.59, three trials, 546 women, evidence graded low ), placental abruption (one trial, 459 women), pre‐eclampsia (one trial, 459 women), vaginal birth (three trials 546 women), assisted vaginal birth (three trials 546 women), breastfeeding rates (one trial, 218 women), and number of weeks of breastfeeding after delivery one trial, 124 women). There was an expected increase in induction in the early delivery group (RR 2.05, 95% CI 1.78 to 2.37, one trial, 459 women). No data were reported for the pre‐specified secondary neonatal outcomes of the number of days of mechanical ventilation, moderate‐severe hypoxic ischaemic encephalopathy or need for therapeutic hypothermia. Likewise, no data were reported for secondary maternal outcomes of postnatal infection, maternal satisfaction or views of care. A policy for planned early delivery versus expectant management for a suspected compromised fetus at term does not demonstrate any differences in major outcomes of perinatal mortality, significant neonatal or maternal morbidity or neurodevelopmental disability. In women randomised to planned early delivery, the gestational age at birth was on average 10 days earlier, women were less likely to have a baby beyond 40 weeks' gestation, they were more likely to be induced and infants were more likely to be admitted to intermediate care nursery. There was also a significant difference in the proportion of babies with a birthweight centile < 2.3rd, however this did not translate into a reduction in morbidity. The review is informed by only one large trial and two smaller trials assessing fetuses with IUGR or oligohydramnios and therefore cannot be generalised to all term pregnancies with suspected fetal compromise. There are other indications for suspecting compromise in a fetus at or near term such as maternal perception of DFM, and ultrasound and/or CTG abnormalities. Future randomised trials need to assess effectiveness of timing of delivery for these indications. |
t4 | t4_2 | no | We asked in this Cochrane review if it is better to induce labour or do a caesarean section (both ways of ensuring the baby is born earlier) rather than letting the pregnancy continue until labour starts by itself. | Fetal compromise in the term pregnancy is suspected when the following clinical indicators are present: intrauterine growth restriction (IUGR), decreased fetal movement (DFM), or when investigations such as cardiotocography (CTG) and ultrasound reveal results inconsistent with standard measurements. Pathological results would necessitate the need for immediate delivery, but the management for ‘suspicious’ results remains unclear and varies widely across clinical centres. There is clinical uncertainty as to how to best manage women presenting with a suspected term compromised baby in an otherwise healthy pregnancy. Objectives To assess, using the best available evidence, the effects of immediate delivery versus expectant management of the term suspected compromised baby on neonatal, maternal and long‐term outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015) and reference lists of retrieved studies. Selection criteria Randomised or quasi‐randomised controlled trials comparing expectant management versus planned early delivery for women with a suspected compromised fetus from 37 weeks' gestation or more. Data collection and analysis Two review authors independently assessed trials for inclusion and assessed trial quality. Two review authors independently extracted data. Data were checked for accuracy. We assessed the quality of the evidence using the GRADE approach. Of the 20 reports identified by the search strategy, we included three trials (546 participants: 269 to early delivery and 277 to expectant management), which met our inclusion criteria. Two of the trials compared outcomes in 492 pregnancies with IUGR of the fetus, and one in 54 pregnancies with oligohydramnios. All three trials were of reasonable quality and at low risk of bias. The level of evidence was graded moderate, low or very low, downgrading mostly for imprecision and for some indirectness. Overall, there was no difference in the primary neonatal outcomes of perinatal mortality (no deaths in either group, one trial, 459 women, evidence graded moderate ), major neonatal morbidity (risk ratio (RR) 0.15, 95% confidence interval (CI) 0.01 to 2.81, one trial, 459 women, evidence graded low ), or neurodevelopmental disability/impairment at two years of age (RR 2.04, 95% CI 0.62 to 6.69,one trial, 459 women, evidence graded low ). There was no difference in the risk of necrotising enterocolitis (one trial, 333 infants) or meconium aspiration (one trial, 459 infants), There was also no difference in the reported primary maternal outcomes: maternal mortality (RR 3.07, 95% CI 0.13 to 74.87, one trial, 459 women, evidence graded low ), and significant maternal morbidity (RR 0.92, 95% CI 0.38 to 2.22, one trial, 459 women, evidence graded low ). The gestational age at birth was on average 10 days earlier in women randomised to early delivery (mean difference (MD) ‐9.50, 95% CI ‐10.82 to ‐8.18, one trial, 459 women) and women in the early delivery group were significantly less likely to have a baby beyond 40 weeks' gestation (RR 0.10, 95% CI 0.01 to 0.67, one trial, 33 women). Significantly more infants in the planned early delivery group were admitted to intermediate care nursery (RR 1.28, 95% CI 1.02 to 1.61, two trials, 491 infants). There was no difference in the risk of respiratory distress syndrome, (one trial, 333 infants), Apgar score less than seven at five minutes (three trials, 546 infants), resuscitation required (one trial, 459 infants), mechanical ventilation (one trial, 337 infants), admission to neonatal intensive care unit (NICU) (RR 0.88, 95% CI 0.35 to 2.23, three trials, 545 infants, evidence graded very low ), length of stay in NICU/SCN (one trial, 459 infants), and sepsis (two trials, 366 infants). Babies in the expectant management group were more likely to be < 2.3rd centile for birthweight (RR 0.51, 95% CI 0.36 to 0.73, two trials, 491 infants), however there was no difference in the proportion of babies with birthweight < 10th centile (RR 0.98, 95% CI 0.88 to 1.10). There was no difference in any of the reported maternal secondary outcomes including: caesarean section rates (RR 1.02, 95% CI 0.65 to 1.59, three trials, 546 women, evidence graded low ), placental abruption (one trial, 459 women), pre‐eclampsia (one trial, 459 women), vaginal birth (three trials 546 women), assisted vaginal birth (three trials 546 women), breastfeeding rates (one trial, 218 women), and number of weeks of breastfeeding after delivery one trial, 124 women). There was an expected increase in induction in the early delivery group (RR 2.05, 95% CI 1.78 to 2.37, one trial, 459 women). No data were reported for the pre‐specified secondary neonatal outcomes of the number of days of mechanical ventilation, moderate‐severe hypoxic ischaemic encephalopathy or need for therapeutic hypothermia. Likewise, no data were reported for secondary maternal outcomes of postnatal infection, maternal satisfaction or views of care. A policy for planned early delivery versus expectant management for a suspected compromised fetus at term does not demonstrate any differences in major outcomes of perinatal mortality, significant neonatal or maternal morbidity or neurodevelopmental disability. In women randomised to planned early delivery, the gestational age at birth was on average 10 days earlier, women were less likely to have a baby beyond 40 weeks' gestation, they were more likely to be induced and infants were more likely to be admitted to intermediate care nursery. There was also a significant difference in the proportion of babies with a birthweight centile < 2.3rd, however this did not translate into a reduction in morbidity. The review is informed by only one large trial and two smaller trials assessing fetuses with IUGR or oligohydramnios and therefore cannot be generalised to all term pregnancies with suspected fetal compromise. There are other indications for suspecting compromise in a fetus at or near term such as maternal perception of DFM, and ultrasound and/or CTG abnormalities. Future randomised trials need to assess effectiveness of timing of delivery for these indications. |
Subsets and Splits