Commit
·
f5e30d5
1
Parent(s):
db35e01
Add automatic dataset card generation
Browse files- Creates minimal dataset card with generation details
- Documents dataset structure and usage
- Includes source dataset, model, and generation parameters
- Auto-pushed with dataset to HuggingFace Hub
- gpt_oss_minimal.py +66 -4
- gpt_oss_transformers.py +73 -163
gpt_oss_minimal.py
CHANGED
|
@@ -37,13 +37,57 @@ import sys
|
|
| 37 |
|
| 38 |
import torch
|
| 39 |
from datasets import Dataset, load_dataset
|
| 40 |
-
from huggingface_hub import get_token, login
|
| 41 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 42 |
|
| 43 |
# Enable fast downloads
|
| 44 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def main():
|
| 48 |
parser = argparse.ArgumentParser(
|
| 49 |
description="Minimal GPT OSS generation for HF Jobs"
|
|
@@ -60,7 +104,9 @@ def main():
|
|
| 60 |
parser.add_argument("--model-id", default="openai/gpt-oss-20b", help="Model to use")
|
| 61 |
parser.add_argument("--max-samples", type=int, help="Limit number of samples")
|
| 62 |
parser.add_argument(
|
| 63 |
-
"--max-new-tokens",
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
parser.add_argument(
|
| 66 |
"--reasoning-effort",
|
|
@@ -81,7 +127,7 @@ def main():
|
|
| 81 |
help="Top-p sampling (default: 1.0)",
|
| 82 |
)
|
| 83 |
args = parser.parse_args()
|
| 84 |
-
|
| 85 |
# Auto-scale max_new_tokens based on reasoning effort if not explicitly set
|
| 86 |
if args.max_new_tokens is None:
|
| 87 |
if args.reasoning_effort == "high":
|
|
@@ -90,7 +136,9 @@ def main():
|
|
| 90 |
args.max_new_tokens = 1024
|
| 91 |
else: # low
|
| 92 |
args.max_new_tokens = 512
|
| 93 |
-
print(
|
|
|
|
|
|
|
| 94 |
|
| 95 |
# Check GPU availability
|
| 96 |
if not torch.cuda.is_available():
|
|
@@ -148,6 +196,8 @@ def main():
|
|
| 148 |
|
| 149 |
# Process each example
|
| 150 |
results = []
|
|
|
|
|
|
|
| 151 |
for i, example in enumerate(dataset):
|
| 152 |
print(f"[{i + 1}/{len(dataset)}] Processing...")
|
| 153 |
|
|
@@ -203,6 +253,18 @@ def main():
|
|
| 203 |
|
| 204 |
print(f"Pushing to {args.output_dataset}...")
|
| 205 |
output_dataset.push_to_hub(args.output_dataset, token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
print(f"\n✅ Complete!")
|
| 208 |
print(f"Dataset: https://huggingface.co/datasets/{args.output_dataset}")
|
|
|
|
| 37 |
|
| 38 |
import torch
|
| 39 |
from datasets import Dataset, load_dataset
|
| 40 |
+
from huggingface_hub import DatasetCard, get_token, login
|
| 41 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 42 |
+
from datetime import datetime
|
| 43 |
|
| 44 |
# Enable fast downloads
|
| 45 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 46 |
|
| 47 |
|
| 48 |
+
def create_dataset_card(
|
| 49 |
+
input_dataset: str,
|
| 50 |
+
model_id: str,
|
| 51 |
+
num_examples: int,
|
| 52 |
+
reasoning_effort: str,
|
| 53 |
+
generation_time: str,
|
| 54 |
+
) -> str:
|
| 55 |
+
"""Create a minimal dataset card."""
|
| 56 |
+
return f"""---
|
| 57 |
+
tags:
|
| 58 |
+
- synthetic
|
| 59 |
+
- gpt-oss
|
| 60 |
+
- reasoning
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
# GPT OSS Generated Responses
|
| 64 |
+
|
| 65 |
+
This dataset was generated using OpenAI's GPT OSS model with reasoning channels.
|
| 66 |
+
|
| 67 |
+
## Generation Details
|
| 68 |
+
|
| 69 |
+
- **Source Dataset**: [{input_dataset}](https://huggingface.co/datasets/{input_dataset})
|
| 70 |
+
- **Model**: [{model_id}](https://huggingface.co/{model_id})
|
| 71 |
+
- **Number of Examples**: {num_examples:,}
|
| 72 |
+
- **Reasoning Effort**: {reasoning_effort}
|
| 73 |
+
- **Generation Date**: {generation_time}
|
| 74 |
+
|
| 75 |
+
## Dataset Structure
|
| 76 |
+
|
| 77 |
+
Each example contains:
|
| 78 |
+
- `prompt`: Original prompt from source dataset
|
| 79 |
+
- `raw_output`: Full model response with channel markers
|
| 80 |
+
- `model`: Model identifier
|
| 81 |
+
- `reasoning_effort`: Reasoning level used
|
| 82 |
+
|
| 83 |
+
## Usage
|
| 84 |
+
|
| 85 |
+
To extract the final response, look for text after `<|channel|>final<|message|>` in the raw_output.
|
| 86 |
+
|
| 87 |
+
Generated using [davanstrien/openai-oss](https://huggingface.co/datasets/davanstrien/openai-oss).
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
|
| 91 |
def main():
|
| 92 |
parser = argparse.ArgumentParser(
|
| 93 |
description="Minimal GPT OSS generation for HF Jobs"
|
|
|
|
| 104 |
parser.add_argument("--model-id", default="openai/gpt-oss-20b", help="Model to use")
|
| 105 |
parser.add_argument("--max-samples", type=int, help="Limit number of samples")
|
| 106 |
parser.add_argument(
|
| 107 |
+
"--max-new-tokens",
|
| 108 |
+
type=int,
|
| 109 |
+
help="Max tokens to generate (auto-scales with reasoning effort if not set)",
|
| 110 |
)
|
| 111 |
parser.add_argument(
|
| 112 |
"--reasoning-effort",
|
|
|
|
| 127 |
help="Top-p sampling (default: 1.0)",
|
| 128 |
)
|
| 129 |
args = parser.parse_args()
|
| 130 |
+
|
| 131 |
# Auto-scale max_new_tokens based on reasoning effort if not explicitly set
|
| 132 |
if args.max_new_tokens is None:
|
| 133 |
if args.reasoning_effort == "high":
|
|
|
|
| 136 |
args.max_new_tokens = 1024
|
| 137 |
else: # low
|
| 138 |
args.max_new_tokens = 512
|
| 139 |
+
print(
|
| 140 |
+
f"Auto-set max_new_tokens={args.max_new_tokens} based on reasoning_effort={args.reasoning_effort}"
|
| 141 |
+
)
|
| 142 |
|
| 143 |
# Check GPU availability
|
| 144 |
if not torch.cuda.is_available():
|
|
|
|
| 196 |
|
| 197 |
# Process each example
|
| 198 |
results = []
|
| 199 |
+
generation_start_time = datetime.now().isoformat()
|
| 200 |
+
|
| 201 |
for i, example in enumerate(dataset):
|
| 202 |
print(f"[{i + 1}/{len(dataset)}] Processing...")
|
| 203 |
|
|
|
|
| 253 |
|
| 254 |
print(f"Pushing to {args.output_dataset}...")
|
| 255 |
output_dataset.push_to_hub(args.output_dataset, token=token)
|
| 256 |
+
|
| 257 |
+
# Create and push dataset card
|
| 258 |
+
print("Creating dataset card...")
|
| 259 |
+
card_content = create_dataset_card(
|
| 260 |
+
input_dataset=args.input_dataset,
|
| 261 |
+
model_id=args.model_id,
|
| 262 |
+
num_examples=len(results),
|
| 263 |
+
reasoning_effort=args.reasoning_effort,
|
| 264 |
+
generation_time=generation_start_time,
|
| 265 |
+
)
|
| 266 |
+
card = DatasetCard(card_content)
|
| 267 |
+
card.push_to_hub(args.output_dataset, token=token)
|
| 268 |
|
| 269 |
print(f"\n✅ Complete!")
|
| 270 |
print(f"Dataset: https://huggingface.co/datasets/{args.output_dataset}")
|
gpt_oss_transformers.py
CHANGED
|
@@ -3,42 +3,39 @@
|
|
| 3 |
# dependencies = [
|
| 4 |
# "datasets",
|
| 5 |
# "huggingface-hub[hf_transfer]",
|
| 6 |
-
# "hf-xet >= 1.1.7",
|
| 7 |
# "torch",
|
| 8 |
-
# "transformers>=4.
|
| 9 |
# "tqdm",
|
| 10 |
# "accelerate",
|
| 11 |
# ]
|
| 12 |
# ///
|
| 13 |
"""
|
| 14 |
-
Generate responses with transparent reasoning using OpenAI's GPT OSS models.
|
| 15 |
|
| 16 |
-
This implementation
|
| 17 |
-
The models
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
Key features:
|
| 21 |
-
- Works on regular GPUs without special hardware
|
| 22 |
-
- Extracts reasoning from analysis/commentary channels
|
| 23 |
-
- Handles the simplified channel output format
|
| 24 |
-
- No Flash Attention 3 or special kernels needed
|
| 25 |
|
| 26 |
Example usage:
|
| 27 |
-
# Quick test with a single prompt
|
| 28 |
-
uv run gpt_oss_transformers.py --prompt "Write a haiku about mountains"
|
| 29 |
-
|
| 30 |
# Generate haiku with reasoning
|
| 31 |
uv run gpt_oss_transformers.py \\
|
| 32 |
--input-dataset davanstrien/haiku_dpo \\
|
| 33 |
--output-dataset username/haiku-reasoning \\
|
| 34 |
--prompt-column question
|
| 35 |
|
| 36 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
hf jobs uv run --flavor a10g-small \\
|
| 38 |
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\
|
| 39 |
-
--input-dataset
|
| 40 |
-
--output-dataset username/
|
| 41 |
-
--prompt-column question
|
| 42 |
"""
|
| 43 |
|
| 44 |
import argparse
|
|
@@ -91,79 +88,34 @@ def parse_channels(raw_output: str) -> Dict[str, str]:
|
|
| 91 |
"""
|
| 92 |
Extract think/content from GPT OSS channel-based output.
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
Sometimes includes commentary channel:
|
| 98 |
-
commentaryMETA_TEXTanalysisREASONING_TEXTassistantfinalRESPONSE_TEXT
|
| 99 |
"""
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# Clean up the text - remove system prompt if present
|
| 103 |
-
if "user" in raw_output:
|
| 104 |
-
# Take everything after the last user prompt
|
| 105 |
-
parts = raw_output.split("user")
|
| 106 |
-
if len(parts) > 1:
|
| 107 |
-
text = parts[-1]
|
| 108 |
-
# Find where the assistant response starts
|
| 109 |
-
for marker in ["analysis", "commentary", "assistant"]:
|
| 110 |
-
if marker in text:
|
| 111 |
-
idx = text.find(marker)
|
| 112 |
-
if idx > 0:
|
| 113 |
-
text = text[idx:]
|
| 114 |
-
raw_output = text
|
| 115 |
-
break
|
| 116 |
-
else:
|
| 117 |
-
text = raw_output
|
| 118 |
-
|
| 119 |
-
# Extract reasoning (analysis and/or commentary)
|
| 120 |
-
reasoning_parts = []
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
# Try to extract commentary
|
| 131 |
-
if "commentary" in text:
|
| 132 |
-
match = re.search(
|
| 133 |
-
r"commentary(.*?)(?:analysis|assistantfinal|final|$)", text, re.DOTALL
|
| 134 |
-
)
|
| 135 |
-
if match:
|
| 136 |
-
reasoning_parts.append(("Commentary", match.group(1).strip()))
|
| 137 |
-
|
| 138 |
-
# Combine reasoning
|
| 139 |
-
if reasoning_parts:
|
| 140 |
-
result["think"] = "\n\n".join(
|
| 141 |
-
f"[{label}] {content}" for label, content in reasoning_parts
|
| 142 |
-
)
|
| 143 |
|
| 144 |
-
# Extract final
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
parts = text.split("final")
|
| 152 |
-
if len(parts) > 1:
|
| 153 |
-
result["content"] = parts[-1].strip()
|
| 154 |
-
|
| 155 |
-
# Clean up any remaining tokens
|
| 156 |
-
for key in ["think", "content"]:
|
| 157 |
-
result[key] = result[key].replace("<|end|>", "").replace("<|return|>", "")
|
| 158 |
-
result[key] = (
|
| 159 |
-
result[key].replace("<|message|>", "").replace("assistant", "").strip()
|
| 160 |
-
)
|
| 161 |
|
| 162 |
# If no channels found, treat entire output as content
|
| 163 |
-
if not
|
| 164 |
-
|
| 165 |
|
| 166 |
-
return
|
| 167 |
|
| 168 |
|
| 169 |
def create_dataset_card(
|
|
@@ -274,75 +226,40 @@ def main(
|
|
| 274 |
logger.info("HuggingFace token found, authenticating...")
|
| 275 |
login(token=HF_TOKEN)
|
| 276 |
|
| 277 |
-
# Load tokenizer
|
| 278 |
logger.info(f"Loading tokenizer: {model_id}")
|
| 279 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 280 |
-
model_id,
|
| 281 |
-
padding_side="left", # Always use left padding for generation
|
| 282 |
)
|
| 283 |
|
| 284 |
# Add padding token if needed
|
| 285 |
if tokenizer.pad_token is None:
|
| 286 |
tokenizer.pad_token = tokenizer.eos_token
|
| 287 |
|
| 288 |
-
# Model loading configuration
|
| 289 |
-
|
| 290 |
-
# For 120B model, use tensor parallel planning
|
| 291 |
-
if "120b" in model_id:
|
| 292 |
-
model_kwargs = {
|
| 293 |
-
"tp_plan": "auto",
|
| 294 |
-
"enable_expert_parallel": True,
|
| 295 |
-
}
|
| 296 |
-
else:
|
| 297 |
-
model_kwargs = {
|
| 298 |
-
"device_map": "auto",
|
| 299 |
-
}
|
| 300 |
|
| 301 |
# Load model
|
| 302 |
logger.info(f"Loading model: {model_id}")
|
| 303 |
-
logger.info("
|
| 304 |
-
|
| 305 |
-
# Note about MXFP4
|
| 306 |
-
logger.info("Note: MXFP4 will auto-dequantize to bf16 on non-Hopper GPUs")
|
| 307 |
-
|
| 308 |
-
# Check available GPU memory
|
| 309 |
-
if num_gpus > 0:
|
| 310 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 311 |
-
if gpu_memory < 40 and "20b" in model_id.lower():
|
| 312 |
-
logger.info(
|
| 313 |
-
f"GPU has {gpu_memory:.1f}GB. 20B model needs ~40GB when dequantized"
|
| 314 |
-
)
|
| 315 |
-
logger.info("Model will still load but may use CPU offloading if needed")
|
| 316 |
|
| 317 |
try:
|
| 318 |
-
# Load with standard configuration (no Flash Attention 3)
|
| 319 |
-
# This works on L4, A100, A10G, T4 GPUs
|
| 320 |
model = AutoModelForCausalLM.from_pretrained(
|
| 321 |
model_id,
|
| 322 |
-
torch_dtype=torch.bfloat16,
|
| 323 |
-
|
| 324 |
-
**model_kwargs,
|
| 325 |
)
|
| 326 |
model.eval()
|
| 327 |
-
logger.info("Successfully loaded model")
|
| 328 |
-
|
| 329 |
-
# Report memory usage
|
| 330 |
-
if torch.cuda.is_available():
|
| 331 |
-
memory_gb = torch.cuda.memory_allocated() / 1024**3
|
| 332 |
-
logger.info(f"GPU memory used: {memory_gb:.1f}GB")
|
| 333 |
-
|
| 334 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 335 |
-
logger.error(f"Out of memory error: {e}")
|
| 336 |
-
logger.error("\nMemory requirements:")
|
| 337 |
-
logger.error("- 20B model: ~40GB VRAM (use A100-40GB or 2xL4)")
|
| 338 |
-
logger.error("- 120B model: ~240GB VRAM (use 4xA100-80GB)")
|
| 339 |
-
logger.error("\nFor HF Jobs, try:")
|
| 340 |
-
logger.error("- 20B: --flavor a10g-large or a100-large")
|
| 341 |
-
logger.error("- 120B: --flavor 4xa100")
|
| 342 |
-
sys.exit(1)
|
| 343 |
except Exception as e:
|
| 344 |
-
logger.error(f"
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
# Generation configuration
|
| 348 |
generation_config = GenerationConfig(
|
|
@@ -375,36 +292,29 @@ def main(
|
|
| 375 |
prompts = []
|
| 376 |
original_prompts = []
|
| 377 |
|
| 378 |
-
# Get current date for system prompt
|
| 379 |
-
from datetime import datetime
|
| 380 |
-
|
| 381 |
-
current_date = datetime.now().strftime("%Y-%m-%d")
|
| 382 |
-
|
| 383 |
for example in tqdm(dataset, desc="Preparing prompts"):
|
| 384 |
prompt_text = example[prompt_column]
|
| 385 |
original_prompts.append(prompt_text)
|
| 386 |
|
| 387 |
-
# Create
|
| 388 |
-
messages = [
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
tokenize=False,
|
| 407 |
-
)
|
| 408 |
prompts.append(prompt)
|
| 409 |
|
| 410 |
# Generate responses in batches
|
|
|
|
| 3 |
# dependencies = [
|
| 4 |
# "datasets",
|
| 5 |
# "huggingface-hub[hf_transfer]",
|
|
|
|
| 6 |
# "torch",
|
| 7 |
+
# "transformers>=4.45.0",
|
| 8 |
# "tqdm",
|
| 9 |
# "accelerate",
|
| 10 |
# ]
|
| 11 |
# ///
|
| 12 |
"""
|
| 13 |
+
Generate responses with transparent reasoning using OpenAI's open source GPT OSS models.
|
| 14 |
|
| 15 |
+
This implementation uses standard Transformers library for maximum compatibility.
|
| 16 |
+
The models output structured reasoning in separate channels, allowing you to
|
| 17 |
+
capture both the thinking process and final response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
Example usage:
|
|
|
|
|
|
|
|
|
|
| 20 |
# Generate haiku with reasoning
|
| 21 |
uv run gpt_oss_transformers.py \\
|
| 22 |
--input-dataset davanstrien/haiku_dpo \\
|
| 23 |
--output-dataset username/haiku-reasoning \\
|
| 24 |
--prompt-column question
|
| 25 |
|
| 26 |
+
# Any prompt dataset with custom settings
|
| 27 |
+
uv run gpt_oss_transformers.py \\
|
| 28 |
+
--input-dataset username/prompts \\
|
| 29 |
+
--output-dataset username/responses-with-reasoning \\
|
| 30 |
+
--prompt-column prompt \\
|
| 31 |
+
--reasoning-level high \\
|
| 32 |
+
--max-samples 100
|
| 33 |
+
|
| 34 |
+
# HF Jobs execution
|
| 35 |
hf jobs uv run --flavor a10g-small \\
|
| 36 |
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\
|
| 37 |
+
--input-dataset username/prompts \\
|
| 38 |
+
--output-dataset username/responses-with-reasoning
|
|
|
|
| 39 |
"""
|
| 40 |
|
| 41 |
import argparse
|
|
|
|
| 88 |
"""
|
| 89 |
Extract think/content from GPT OSS channel-based output.
|
| 90 |
|
| 91 |
+
Expected format:
|
| 92 |
+
<|start|>assistant<|channel|>analysis<|message|>CHAIN_OF_THOUGHT<|end|>
|
| 93 |
+
<|start|>assistant<|channel|>final<|message|>ACTUAL_MESSAGE
|
|
|
|
|
|
|
| 94 |
"""
|
| 95 |
+
think = ""
|
| 96 |
+
content = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
# Extract analysis channel (chain of thought)
|
| 99 |
+
analysis_pattern = (
|
| 100 |
+
r"<\|start\|>assistant<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"
|
| 101 |
+
)
|
| 102 |
+
analysis_match = re.search(analysis_pattern, raw_output, re.DOTALL)
|
| 103 |
+
if analysis_match:
|
| 104 |
+
think = analysis_match.group(1).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Extract final channel (user-facing content)
|
| 107 |
+
final_pattern = (
|
| 108 |
+
r"<\|start\|>assistant<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"
|
| 109 |
+
)
|
| 110 |
+
final_match = re.search(final_pattern, raw_output, re.DOTALL)
|
| 111 |
+
if final_match:
|
| 112 |
+
content = final_match[1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# If no channels found, treat entire output as content
|
| 115 |
+
if not think and not content:
|
| 116 |
+
content = raw_output.strip()
|
| 117 |
|
| 118 |
+
return {"think": think, "content": content, "raw_output": raw_output}
|
| 119 |
|
| 120 |
|
| 121 |
def create_dataset_card(
|
|
|
|
| 226 |
logger.info("HuggingFace token found, authenticating...")
|
| 227 |
login(token=HF_TOKEN)
|
| 228 |
|
| 229 |
+
# Load tokenizer
|
| 230 |
logger.info(f"Loading tokenizer: {model_id}")
|
| 231 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 232 |
+
model_id, padding_side="left" if "120b" in model_id else "right"
|
|
|
|
| 233 |
)
|
| 234 |
|
| 235 |
# Add padding token if needed
|
| 236 |
if tokenizer.pad_token is None:
|
| 237 |
tokenizer.pad_token = tokenizer.eos_token
|
| 238 |
|
| 239 |
+
# Model loading configuration
|
| 240 |
+
device_map = {"tp_plan": "auto"} if "120b" in model_id else "auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
# Load model
|
| 243 |
logger.info(f"Loading model: {model_id}")
|
| 244 |
+
logger.info("This may take a few minutes for large models...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
try:
|
|
|
|
|
|
|
| 247 |
model = AutoModelForCausalLM.from_pretrained(
|
| 248 |
model_id,
|
| 249 |
+
torch_dtype=torch.bfloat16,
|
| 250 |
+
**device_map,
|
|
|
|
| 251 |
)
|
| 252 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
except Exception as e:
|
| 254 |
+
logger.error(f"Failed to load model: {e}")
|
| 255 |
+
logger.error("Trying with default configuration...")
|
| 256 |
+
# Fallback to simpler loading
|
| 257 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 258 |
+
model_id,
|
| 259 |
+
torch_dtype="auto",
|
| 260 |
+
device_map="auto",
|
| 261 |
+
)
|
| 262 |
+
model.eval()
|
| 263 |
|
| 264 |
# Generation configuration
|
| 265 |
generation_config = GenerationConfig(
|
|
|
|
| 292 |
prompts = []
|
| 293 |
original_prompts = []
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
for example in tqdm(dataset, desc="Preparing prompts"):
|
| 296 |
prompt_text = example[prompt_column]
|
| 297 |
original_prompts.append(prompt_text)
|
| 298 |
|
| 299 |
+
# Create message format (using user role only as per documentation)
|
| 300 |
+
messages = [{"role": "user", "content": prompt_text}]
|
| 301 |
+
|
| 302 |
+
# Apply chat template with reasoning effort
|
| 303 |
+
try:
|
| 304 |
+
prompt = tokenizer.apply_chat_template(
|
| 305 |
+
messages,
|
| 306 |
+
reasoning_effort=reasoning_level,
|
| 307 |
+
add_generation_prompt=True,
|
| 308 |
+
tokenize=False,
|
| 309 |
+
)
|
| 310 |
+
except TypeError:
|
| 311 |
+
# Fallback if reasoning_effort parameter not supported
|
| 312 |
+
logger.warning(
|
| 313 |
+
"reasoning_effort parameter not supported, using standard template"
|
| 314 |
+
)
|
| 315 |
+
prompt = tokenizer.apply_chat_template(
|
| 316 |
+
messages, add_generation_prompt=True, tokenize=False
|
| 317 |
+
)
|
|
|
|
|
|
|
| 318 |
prompts.append(prompt)
|
| 319 |
|
| 320 |
# Generate responses in batches
|