--- viewer: false tags: [uv-script] --- # Atlas Export Generate and deploy interactive embedding visualizations to HuggingFace Spaces with a single command using Apple's [Embedding Atlas](https://github.com/apple/embedding-atlas) library! ![Example Visualization](https://huggingface.co/datasets/huggingface/documentation-images/resolve/58e8cf44ec5d74712775b7049b1203f9b0b15ebb/hub/atlas-dataset-library-screenshot.png) ## Quick Start ```bash # Create a Space from any text dataset uv run atlas-export.py stanfordnlp/imdb --space-name my-imdb-viz # Your Space will be live at: # https://huggingface.co/spaces/YOUR_USERNAME/my-imdb-viz ``` **⚠️ Note:** Currently this approach is limited by storage capacity for files on Spaces so for big datasets consider using the `--sample` option to limit the number of points visualized! ## Examples ### Image Datasets ```bash # Visualize image datasets with CLIP uv run atlas-export.py \ beans \ --space-name bean-disease-atlas \ --image-column image \ --model openai/clip-vit-base-patch32 ``` ### Custom Embeddings ```bash # Use a specific embedding model uv run atlas-export.py \ wikipedia \ --space-name wiki-viz \ --model nomic-ai/nomic-embed-text-v1.5 \ --text-column text \ --sample 50000 ``` ### Pre-computed Embeddings ```bash # If you already have embeddings in your dataset uv run atlas-export.py \ my-dataset-with-embeddings \ --space-name my-viz \ --no-compute-embeddings \ --x-column umap_x \ --y-column umap_y ``` ### GPU Acceleration (HF Jobs) ```bash # First, get your HF token (if not already set) python -c "from huggingface_hub import get_token; print(get_token())" # Run on HF Jobs with GPU using experimental UV support hf jobs uv run --flavor t4-small \ -s HF_TOKEN=your-token-here \ https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py \ stanfordnlp/imdb \ --space-name imdb-viz \ --model sentence-transformers/all-mpnet-base-v2 \ --sample 10000 # With larger GPU and custom batch size for faster processing hf jobs uv run --flavor a10g-large \ -s HF_TOKEN=your-token-here \ https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py \ your-dataset \ --space-name your-atlas \ --batch-size 64 \ --sample 50000 \ --text-column output ``` Note: Replace `your-token-here` with your actual token. Available GPU flavors: `t4-small`, `t4-medium`, `l4x1`, `a10g-small`, `a10g-large`. ## Key Options | Option | Description | Default | | ---------------- | ----------------------------------- | ---------------------- | | `dataset_id` | HuggingFace dataset to visualize | Required | | `--space-name` | Name for your Space | Required | | `--model` | Embedding model to use | Auto-selected | | `--text-column` | Column containing text | "text" | | `--image-column` | Column containing images | None | | `--sample` | Number of samples to visualize | All | | `--batch-size` | Batch size for embedding generation | 32 (text), 16 (images) | | `--split` | Dataset split to use | "train" | | `--local-only` | Generate locally without deploying | False | | `--output-dir` | Local output directory | Temp dir | | `--hf-token` | HuggingFace API token | From env/CLI | Run without arguments to see all options and more examples. ## How It Works 1. Loads dataset from HuggingFace Hub 2. Generates embeddings (or uses pre-computed) 3. Creates static web app with embedded data 4. Deploys to HF Space The resulting visualization runs entirely in the browser using WebGPU acceleration. ## Credits Built on [Embedding Atlas](https://github.com/apple/embedding-atlas) by Apple. See the [documentation](https://apple.github.io/embedding-atlas/) for more details about the underlying technology. --- Part of the [UV Scripts](https://huggingface.co/uv-scripts) collection 🚀