Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dataset for HybRank
|
| 2 |
+
|
| 3 |
+
You can download preprocessed data from [HuggingFace Repo](https://huggingface.co/datasets/ustc-zhangzm/HybRank)
|
| 4 |
+
|
| 5 |
+
Note that `train_scores.hdf5` of `MS MARCO` dataset files are split via
|
| 6 |
+
```bash
|
| 7 |
+
split -d -b 3G train_scores.hdf5 train_scores.hdf5.
|
| 8 |
+
```
|
| 9 |
+
|
| 10 |
+
Run following command to concatenate these files after all shards have been downloaded
|
| 11 |
+
```bash
|
| 12 |
+
cat train_scores.hdf5.* > train_scores.hdf5
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
Or you can generate data by yourself via the following steps:
|
| 16 |
+
|
| 17 |
+
## Dependencies
|
| 18 |
+
```
|
| 19 |
+
java 11.0.16
|
| 20 |
+
maven 3.8.6
|
| 21 |
+
anserini 0.14.3
|
| 22 |
+
faiss-cpu 1.7.2
|
| 23 |
+
pyserini 0.17.1
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## Natural Questions
|
| 28 |
+
|
| 29 |
+
### 1. Download raw data (Refer to [DPR](https://github.com/facebookresearch/DPR) for more details of the dataset)
|
| 30 |
+
```shell
|
| 31 |
+
python download_DPR_data.py --resource data.wikipedia_split.psgs_w100
|
| 32 |
+
python download_DPR_data.py --resource data.retriever.nq
|
| 33 |
+
python download_DPR_data.py --resource data.retriever.qas.nq
|
| 34 |
+
mkdir -p raw && mv downloads raw/NQ
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### 2. Convert collections to jsonl format for Pyserini
|
| 38 |
+
```shell
|
| 39 |
+
python convert_NQ_collection_to_jsonl.py --collection-path raw/NQ/data/wikipedia_split/psgs_w100.tsv --output-folder pyserini/collections/NQ
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### 3. Build Lucene indexes via Pyserini
|
| 43 |
+
```shell
|
| 44 |
+
python -m pyserini.index.lucene \
|
| 45 |
+
--collection JsonCollection \
|
| 46 |
+
--input pyserini/collections/NQ \
|
| 47 |
+
--index pyserini/indexes/NQ \
|
| 48 |
+
--generator DefaultLuceneDocumentGenerator \
|
| 49 |
+
--threads 1 \
|
| 50 |
+
--storePositions --storeDocvectors --storeRaw
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### 4. Generate data
|
| 54 |
+
```shell
|
| 55 |
+
RETRIEVERS=("DPR-Multi" "DPR-Single" "ANCE" "FiD-KD" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")
|
| 56 |
+
|
| 57 |
+
for RETRIEVER in ${RETRIEVERS[@]}; do
|
| 58 |
+
python generate_NQ_data.py --retriever $RETRIEVER
|
| 59 |
+
done
|
| 60 |
+
```
|
| 61 |
+
Note that before generate data for retriever `RocketQA*`, please generate the retrieval results following the instructions in `data/RocketQA_baselines/README.md`. Data for other retrievers can be generated directly.
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## MS MARCO & TREC 2019/2020
|
| 65 |
+
|
| 66 |
+
### 1. Download raw data (Refer to [MS MARCO](https://microsoft.github.io/msmarco/) for more details of the dataset)
|
| 67 |
+
* Download and uncompress MSMARCO Passage Ranking Collections and Queries [collectionandqueries.tar.gz](https://msmarco.blob.core.windows.net/msmarcoranking/collectionandqueries.tar.gz) to `data/raw/MSMARCO/`
|
| 68 |
+
* TREC DL Test Queries and Qrels
|
| 69 |
+
* [TREC DL-2019](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html)
|
| 70 |
+
* Download and uncompress [msmarco-test2019-queries.tsv](https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-test2019-queries.tsv.gz)
|
| 71 |
+
* Download [2019qrels-pass.txt](https://trec.nist.gov/data/deep/2019qrels-pass.txt)
|
| 72 |
+
* [TREC DL-2020](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2020)
|
| 73 |
+
* Download and uncompress [msmarco-test2019-queries.tsv](https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-test2020-queries.tsv.gz)
|
| 74 |
+
* Download [2019qrels-pass.txt](https://trec.nist.gov/data/deep/2020qrels-pass.txt)
|
| 75 |
+
* Put them into `data/raw/TRECDL/`
|
| 76 |
+
|
| 77 |
+
### 2. Convert collections to jsonl format for Pyserini
|
| 78 |
+
|
| 79 |
+
```shell
|
| 80 |
+
python convert_MSMARCO_collection_to_jsonl.py --collection-path raw/MSMARCO/collection.tsv --output-folder pyserini/collections/MSMARCO
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### 3. Build Lucene indexes via Pyserini
|
| 84 |
+
|
| 85 |
+
```shell
|
| 86 |
+
python -m pyserini.index.lucene \
|
| 87 |
+
--collection JsonCollection \
|
| 88 |
+
--input pyserini/collections/MSMARCO \
|
| 89 |
+
--index pyserini/indexes/MSMARCO \
|
| 90 |
+
--generator DefaultLuceneDocumentGenerator \
|
| 91 |
+
--threads 1 \
|
| 92 |
+
--storePositions --storeDocvectors --storeRaw
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
### 4. Generate data
|
| 96 |
+
```shell
|
| 97 |
+
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")
|
| 98 |
+
|
| 99 |
+
for RETRIEVER in ${RETRIEVERS[@]}; do
|
| 100 |
+
python generate_MSMARCO_data.py --retriever $RETRIEVER
|
| 101 |
+
done
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
```shell
|
| 105 |
+
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")
|
| 106 |
+
|
| 107 |
+
SPLITS=("2019" "2020")
|
| 108 |
+
|
| 109 |
+
for RETRIEVER in ${RETRIEVERS[@]}; do
|
| 110 |
+
for SPLIT in ${SPLITS[@]}; do
|
| 111 |
+
python generate_TRECDL_data.py --split $SPLIT --retriever $RETRIEVER
|
| 112 |
+
done
|
| 113 |
+
done
|
| 114 |
+
```
|