nielsr HF Staff commited on
Commit
c0343aa
·
verified ·
1 Parent(s): de935b4

Improve dataset card: Add task category, tags, sample usage, update language and license info

Browse files

This PR enhances the dataset card for UQ by:
- Adding `task_categories: - question-answering` to the metadata.
- Correcting the `language` metadata tag from `code` to `en`, as the dataset content is in English.
- Adding relevant `tags` such as `stack-exchange`, `llm-evaluation`, `benchmark`, `reasoning`, and `factuality` for better discoverability.
- Including a "Sample Usage" section with a Python code snippet from the GitHub README, demonstrating how to load the dataset.
- Updating the "Licensing Information" in the content to explicitly state the MIT License, aligning with the metadata.

Files changed (1) hide show
  1. README.md +29 -4
README.md CHANGED
@@ -1,8 +1,16 @@
1
  ---
 
 
2
  license: mit
3
  pretty_name: UQ
4
- language:
5
- - code
 
 
 
 
 
 
6
  ---
7
 
8
  ![UQ](https://github.com/uq-project/UQ/blob/main/visuals/uq.jpg?raw=true)
@@ -17,6 +25,7 @@ language:
17
  - [Data Instances](#data-instances)
18
  - [Data Fields](#data-fields)
19
  - [Data Splits](#data-splits)
 
20
  - [Dataset Creation](#dataset-creation)
21
  - [Curation Rationale](#curation-rationale)
22
  - [Source Data](#source-data)
@@ -48,7 +57,14 @@ An example looks as follows:
48
  'question_id': '5',
49
  'site': 'crypto',
50
  'title': 'Finding $x$ such that $g^x\\bmod p<p/k$?',
51
- 'body': "In a Schnorr group as used for DSA, of prime modulus $p$, prime order $q$, generator $g$ (with $p/g$ small), how can we efficiently exhibit an $x$ with $0<x<q$ such that $g^x\\bmod p<p/k$, for sizable $k$ but $k\\ll\\sqrt q$ ?\n\nI see that for small $k$, it is enough to try incremental values of $x$ until finding an $x$ that fits, with expected cost $O(k)$ modular multiplications in $\\mathbb Z_p^*$. Is there better?\n\nAssume $p$ is an $l$-bit prime; $q$ is an $n$-bit prime with $q$ dividing $p-1$; and $g=h^{(p-1)/q}$ for some (random?) $h$ in $\\mathbb Z_p^*$. For concrete values, assume $l\\approx1024$, $n\\approx160$, $k\\approx2^{64}$.\n\nUpdate: I'm expecting the problem to be hard, and thus that the more difficult problem of exhibiting $x$ with $g^x\\bmod p$ in a range of width $p/k$ must be hard.\n",
 
 
 
 
 
 
 
52
  'link': 'https://crypto.stackexchange.com/questions/48503/finding-x-such-that-gx-bmod-pp-k',
53
  'tags': ['discrete-logarithm', 'group-theory'],
54
  'votes': 19,
@@ -118,12 +134,21 @@ The data fields are the same among all splits:
118
  | **Business** | Quantitative Finance | 2 |
119
  | **Total** | - | **500** |
120
 
 
 
 
 
 
 
 
 
 
121
 
122
  ## Additional Information
123
 
124
  ### Licensing Information
125
 
126
- The license is TODO.
127
 
128
  ### Citation Information
129
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: mit
5
  pretty_name: UQ
6
+ task_categories:
7
+ - question-answering
8
+ tags:
9
+ - stack-exchange
10
+ - llm-evaluation
11
+ - benchmark
12
+ - reasoning
13
+ - factuality
14
  ---
15
 
16
  ![UQ](https://github.com/uq-project/UQ/blob/main/visuals/uq.jpg?raw=true)
 
25
  - [Data Instances](#data-instances)
26
  - [Data Fields](#data-fields)
27
  - [Data Splits](#data-splits)
28
+ - [Sample Usage](#sample-usage)
29
  - [Dataset Creation](#dataset-creation)
30
  - [Curation Rationale](#curation-rationale)
31
  - [Source Data](#source-data)
 
57
  'question_id': '5',
58
  'site': 'crypto',
59
  'title': 'Finding $x$ such that $g^x\\bmod p&lt;p/k$?',
60
+ 'body': "In a Schnorr group as used for DSA, of prime modulus $p$, prime order $q$, generator $g$ (with $p/g$ small), how can we efficiently exhibit an $x$ with $0<x<q$ such that $g^x\\bmod p<p/k$, for sizable $k$ but $k\\ll\\sqrt q$ ?
61
+
62
+ I see that for small $k$, it is enough to try incremental values of $x$ until finding an $x$ that fits, with expected cost $O(k)$ modular multiplications in $\\mathbb Z_p^*$. Is there better?
63
+
64
+ Assume $p$ is an $l$-bit prime; $q$ is an $n$-bit prime with $q$ dividing $p-1$; and $g=h^{(p-1)/q}$ for some (random?) $h$ in $\\mathbb Z_p^*$. For concrete values, assume $l\\approx1024$, $n\\approx160$, $k\\approx2^{64}$.
65
+
66
+ Update: I'm expecting the problem to be hard, and thus that the more difficult problem of exhibiting $x$ with $g^x\\bmod p$ in a range of width $p/k$ must be hard.\
67
+ \",
68
  'link': 'https://crypto.stackexchange.com/questions/48503/finding-x-such-that-gx-bmod-pp-k',
69
  'tags': ['discrete-logarithm', 'group-theory'],
70
  'votes': 19,
 
134
  | **Business** | Quantitative Finance | 2 |
135
  | **Total** | - | **500** |
136
 
137
+ ## Sample Usage
138
+
139
+ You can load the data from [🤗 uq-project/uq](https://huggingface.co/datasets/uq-project/uq) via:
140
+
141
+ ```python
142
+ # pip install -q datasets
143
+ from datasets import load_dataset
144
+ dataset = load_dataset("uq-project/uq", split="test")
145
+ ```
146
 
147
  ## Additional Information
148
 
149
  ### Licensing Information
150
 
151
+ The dataset is licensed under the MIT License.
152
 
153
  ### Citation Information
154