Upload folder using huggingface_hub
Browse files- formats.py +5 -5
- inference.py +19 -2
- llm_as_judge_constants.py +1 -1
- llm_as_judge_from_template.py +1 -0
- loaders.py +3 -1
- metrics.py +37 -38
- operator.py +4 -0
- operators.py +1 -1
- schema.py +3 -3
- settings_utils.py +3 -0
- standard.py +2 -2
- system_prompts.py +4 -2
- task.py +8 -2
- templates.py +4 -4
- text_utils.py +72 -2
- version.py +1 -1
formats.py
CHANGED
|
@@ -116,7 +116,7 @@ def apply_capital_new_line_notation(text: str) -> str:
|
|
| 116 |
|
| 117 |
|
| 118 |
class BaseFormat(Format):
|
| 119 |
-
demos_field: str =
|
| 120 |
|
| 121 |
@staticmethod
|
| 122 |
def _pop_field(instance, field_name, do_pop: bool = True) -> str:
|
|
@@ -133,14 +133,14 @@ class BaseFormat(Format):
|
|
| 133 |
def _prepare_instance_fields(self, instance) -> Tuple[str]:
|
| 134 |
instance_fields = {}
|
| 135 |
|
| 136 |
-
for field in "source",
|
| 137 |
instance_fields[field] = self._pop_field(instance, field)
|
| 138 |
|
| 139 |
instance_fields["media"] = self._pop_field(instance, "media", do_pop=False)
|
| 140 |
if not instance_fields["media"]:
|
| 141 |
instance_fields["media"] = {"images": [], "audios": []}
|
| 142 |
|
| 143 |
-
instance_fields[
|
| 144 |
if self.demos_field is not None and self.demos_field in instance:
|
| 145 |
demos = instance[self.demos_field]
|
| 146 |
assert (
|
|
@@ -150,7 +150,7 @@ class BaseFormat(Format):
|
|
| 150 |
demo = {}
|
| 151 |
for field in ["source", "target", "target_prefix"]:
|
| 152 |
demo[field] = self._pop_field(demo_instance, field, do_pop=False)
|
| 153 |
-
instance_fields[
|
| 154 |
|
| 155 |
return instance_fields
|
| 156 |
|
|
@@ -219,7 +219,7 @@ class SystemFormat(BaseFormat):
|
|
| 219 |
.. code-block::
|
| 220 |
|
| 221 |
system_format = SystemFormat(
|
| 222 |
-
demos_field=
|
| 223 |
demo_format="Input: {source}\nOutput: {target}\n\n",
|
| 224 |
model_input_format="Instruction: {instruction}\n\n{demos}Input: {source}\nOutput: ",
|
| 225 |
)
|
|
|
|
| 116 |
|
| 117 |
|
| 118 |
class BaseFormat(Format):
|
| 119 |
+
demos_field: str = constants.demos_field
|
| 120 |
|
| 121 |
@staticmethod
|
| 122 |
def _pop_field(instance, field_name, do_pop: bool = True) -> str:
|
|
|
|
| 133 |
def _prepare_instance_fields(self, instance) -> Tuple[str]:
|
| 134 |
instance_fields = {}
|
| 135 |
|
| 136 |
+
for field in "source", constants.instruction_field, constants.system_prompt_field, "target_prefix":
|
| 137 |
instance_fields[field] = self._pop_field(instance, field)
|
| 138 |
|
| 139 |
instance_fields["media"] = self._pop_field(instance, "media", do_pop=False)
|
| 140 |
if not instance_fields["media"]:
|
| 141 |
instance_fields["media"] = {"images": [], "audios": []}
|
| 142 |
|
| 143 |
+
instance_fields[constants.demos_field] = []
|
| 144 |
if self.demos_field is not None and self.demos_field in instance:
|
| 145 |
demos = instance[self.demos_field]
|
| 146 |
assert (
|
|
|
|
| 150 |
demo = {}
|
| 151 |
for field in ["source", "target", "target_prefix"]:
|
| 152 |
demo[field] = self._pop_field(demo_instance, field, do_pop=False)
|
| 153 |
+
instance_fields[constants.demos_field].append(demo)
|
| 154 |
|
| 155 |
return instance_fields
|
| 156 |
|
|
|
|
| 219 |
.. code-block::
|
| 220 |
|
| 221 |
system_format = SystemFormat(
|
| 222 |
+
demos_field=constants.demos_field,
|
| 223 |
demo_format="Input: {source}\nOutput: {target}\n\n",
|
| 224 |
model_input_format="Instruction: {instruction}\n\n{demos}Input: {source}\nOutput: ",
|
| 225 |
)
|
inference.py
CHANGED
|
@@ -1937,6 +1937,9 @@ class WMLChatParamsMixin(Artifact):
|
|
| 1937 |
time_limit: Optional[int] = None
|
| 1938 |
top_p: Optional[float] = None
|
| 1939 |
n: Optional[int] = None
|
|
|
|
|
|
|
|
|
|
| 1940 |
|
| 1941 |
|
| 1942 |
CredentialsWML = Dict[
|
|
@@ -2486,8 +2489,20 @@ class WMLInferenceEngineChat(WMLInferenceEngineBase, WMLChatParamsMixin):
|
|
| 2486 |
"of messages."
|
| 2487 |
)
|
| 2488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2489 |
def to_messages(self, instance: Union[Dict, List]) -> List[List[Dict[str, Any]]]:
|
| 2490 |
-
if isinstance(instance["source"], str) and
|
| 2491 |
return self._create_messages_from_instance(instance)
|
| 2492 |
|
| 2493 |
messages = super().to_messages(instance)
|
|
@@ -2985,7 +3000,9 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
| 2985 |
mapping each supported API to a corresponding
|
| 2986 |
model identifier string. This mapping allows consistent access to models
|
| 2987 |
across different API backends.
|
| 2988 |
-
provider_specific_args:
|
|
|
|
|
|
|
| 2989 |
"""
|
| 2990 |
|
| 2991 |
label: str = "cross_provider"
|
|
|
|
| 1937 |
time_limit: Optional[int] = None
|
| 1938 |
top_p: Optional[float] = None
|
| 1939 |
n: Optional[int] = None
|
| 1940 |
+
seed: Optional[int] = None
|
| 1941 |
+
logit_bias: Optional[Dict[str, Any]] = None
|
| 1942 |
+
stop: Optional[List[str]] = None
|
| 1943 |
|
| 1944 |
|
| 1945 |
CredentialsWML = Dict[
|
|
|
|
| 2489 |
"of messages."
|
| 2490 |
)
|
| 2491 |
|
| 2492 |
+
@staticmethod
|
| 2493 |
+
def check_instance_contains_image(instance: Dict[str, Any]) -> bool:
|
| 2494 |
+
if "media" not in instance:
|
| 2495 |
+
return False
|
| 2496 |
+
if not isinstance(instance["media"], dict):
|
| 2497 |
+
return False
|
| 2498 |
+
if "images" not in instance["media"]:
|
| 2499 |
+
return False
|
| 2500 |
+
if not instance["media"]["images"]:
|
| 2501 |
+
return False
|
| 2502 |
+
return True
|
| 2503 |
+
|
| 2504 |
def to_messages(self, instance: Union[Dict, List]) -> List[List[Dict[str, Any]]]:
|
| 2505 |
+
if isinstance(instance["source"], str) and self.check_instance_contains_image(instance):
|
| 2506 |
return self._create_messages_from_instance(instance)
|
| 2507 |
|
| 2508 |
messages = super().to_messages(instance)
|
|
|
|
| 3000 |
mapping each supported API to a corresponding
|
| 3001 |
model identifier string. This mapping allows consistent access to models
|
| 3002 |
across different API backends.
|
| 3003 |
+
provider_specific_args:
|
| 3004 |
+
(Optional[Dict[str, Dict[str,str]]]) Args specific to a provider for example provider_specific_args={"watsonx": {"max_requests_per_second": 4}}
|
| 3005 |
+
|
| 3006 |
"""
|
| 3007 |
|
| 3008 |
label: str = "cross_provider"
|
llm_as_judge_constants.py
CHANGED
|
@@ -205,7 +205,7 @@ class DirectCriteriaCatalogEnum(Enum):
|
|
| 205 |
),
|
| 206 |
CriteriaOption(
|
| 207 |
"Pass",
|
| 208 |
-
"There is no
|
| 209 |
),
|
| 210 |
],
|
| 211 |
{"Yes": 1.0, "No": 0.5, "Pass": 0.0},
|
|
|
|
| 205 |
),
|
| 206 |
CriteriaOption(
|
| 207 |
"Pass",
|
| 208 |
+
"There is no numerical temperature reading in the response.",
|
| 209 |
),
|
| 210 |
],
|
| 211 |
{"Yes": 1.0, "No": 0.5, "Pass": 0.0},
|
llm_as_judge_from_template.py
CHANGED
|
@@ -37,6 +37,7 @@ class LLMAsJudgeBase(BulkInstanceMetric, ArtifactFetcherMixin):
|
|
| 37 |
inference_model (InferenceEngine): The module that creates the inference of the judge llm.
|
| 38 |
reduction_map (dict): A dictionary specifying the reduction method for the metric.
|
| 39 |
batch_size (int): The size of the bulk.
|
|
|
|
| 40 |
"""
|
| 41 |
|
| 42 |
main_score: str = "llm_as_judge"
|
|
|
|
| 37 |
inference_model (InferenceEngine): The module that creates the inference of the judge llm.
|
| 38 |
reduction_map (dict): A dictionary specifying the reduction method for the metric.
|
| 39 |
batch_size (int): The size of the bulk.
|
| 40 |
+
|
| 41 |
"""
|
| 42 |
|
| 43 |
main_score: str = "llm_as_judge"
|
loaders.py
CHANGED
|
@@ -443,11 +443,13 @@ class LoadCSV(LazyLoader):
|
|
| 443 |
dataset = reader(self.files[split], **self.get_args()).to_dict(
|
| 444 |
"records"
|
| 445 |
)
|
|
|
|
| 446 |
except ValueError:
|
| 447 |
import fsspec
|
| 448 |
|
| 449 |
with fsspec.open(self.files[split], mode="rt") as f:
|
| 450 |
dataset = reader(f, **self.get_args()).to_dict("records")
|
|
|
|
| 451 |
except Exception as e:
|
| 452 |
logger.debug(f"Attempt csv load {attempt + 1} failed: {e}")
|
| 453 |
if attempt < settings.loaders_max_retries - 1:
|
|
@@ -601,7 +603,7 @@ class LoadFromIBMCloud(Loader):
|
|
| 601 |
bucket_name='my-bucket'
|
| 602 |
)
|
| 603 |
multi_stream = load_ibm_cloud.process()
|
| 604 |
-
"""
|
| 605 |
|
| 606 |
endpoint_url_env: str
|
| 607 |
aws_access_key_id_env: str
|
|
|
|
| 443 |
dataset = reader(self.files[split], **self.get_args()).to_dict(
|
| 444 |
"records"
|
| 445 |
)
|
| 446 |
+
break
|
| 447 |
except ValueError:
|
| 448 |
import fsspec
|
| 449 |
|
| 450 |
with fsspec.open(self.files[split], mode="rt") as f:
|
| 451 |
dataset = reader(f, **self.get_args()).to_dict("records")
|
| 452 |
+
break
|
| 453 |
except Exception as e:
|
| 454 |
logger.debug(f"Attempt csv load {attempt + 1} failed: {e}")
|
| 455 |
if attempt < settings.loaders_max_retries - 1:
|
|
|
|
| 603 |
bucket_name='my-bucket'
|
| 604 |
)
|
| 605 |
multi_stream = load_ibm_cloud.process()
|
| 606 |
+
""" # pragma: allowlist secret
|
| 607 |
|
| 608 |
endpoint_url_env: str
|
| 609 |
aws_access_key_id_env: str
|
metrics.py
CHANGED
|
@@ -75,6 +75,7 @@ settings = get_settings()
|
|
| 75 |
|
| 76 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
| 77 |
|
|
|
|
| 78 |
def hf_evaluate_load(path: str, *args, **kwargs):
|
| 79 |
if settings.hf_offline_metrics_path is not None:
|
| 80 |
path = os.path.join(settings.hf_offline_metrics_path, path)
|
|
@@ -83,13 +84,18 @@ def hf_evaluate_load(path: str, *args, **kwargs):
|
|
| 83 |
*args,
|
| 84 |
**kwargs,
|
| 85 |
experiment_id=str(uuid.uuid4()),
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
class MetricsList(ListCollection):
|
| 95 |
def verify(self):
|
|
@@ -2311,13 +2317,11 @@ class HuggingfaceMetric(GlobalMetric):
|
|
| 2311 |
Documentation.HUGGINGFACE_METRICS,
|
| 2312 |
)
|
| 2313 |
|
| 2314 |
-
assert (
|
| 2315 |
-
self.hf_additional_input_fields
|
| 2316 |
-
or isoftype(self.hf_additional_input_fields, List[str])
|
| 2317 |
), f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
|
| 2318 |
-
assert (
|
| 2319 |
-
self.hf_additional_input_fields_pass_one_value
|
| 2320 |
-
or isoftype(self.hf_additional_input_fields_pass_one_value, List[str])
|
| 2321 |
), f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."
|
| 2322 |
|
| 2323 |
return super().verify()
|
|
@@ -2826,9 +2830,7 @@ class F1MultiLabel(GlobalMetric, PackageRequirementsMixin):
|
|
| 2826 |
def prepare(self):
|
| 2827 |
super().prepare()
|
| 2828 |
|
| 2829 |
-
self._metric = hf_evaluate_load(
|
| 2830 |
-
self.metric, "multilabel"
|
| 2831 |
-
)
|
| 2832 |
|
| 2833 |
def add_str_to_id(self, str):
|
| 2834 |
if str not in self.str_to_id:
|
|
@@ -2885,8 +2887,8 @@ class F1MultiLabel(GlobalMetric, PackageRequirementsMixin):
|
|
| 2885 |
labels=labels_param,
|
| 2886 |
)
|
| 2887 |
if isinstance(result[self.metric], numpy.ndarray):
|
| 2888 |
-
assert (
|
| 2889 |
-
|
| 2890 |
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
|
| 2891 |
final_result = {self.main_score: nan_mean(result[self.metric])}
|
| 2892 |
for i, label in enumerate(labels):
|
|
@@ -3625,7 +3627,9 @@ class Detector(BulkInstanceMetric):
|
|
| 3625 |
if settings.hf_offline_models_path is not None:
|
| 3626 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
| 3627 |
self.pipe = pipeline(
|
| 3628 |
-
"text-classification",
|
|
|
|
|
|
|
| 3629 |
)
|
| 3630 |
|
| 3631 |
def compute(
|
|
@@ -3662,7 +3666,6 @@ class RegardMetric(GlobalMetric):
|
|
| 3662 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
| 3663 |
self.regard_model = AutoModelForSequenceClassification.from_pretrained(
|
| 3664 |
model_path,
|
| 3665 |
-
|
| 3666 |
)
|
| 3667 |
self.regard_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 3668 |
|
|
@@ -3865,9 +3868,9 @@ class LlamaIndexLLMMetric(InstanceMetric):
|
|
| 3865 |
prediction_type = str
|
| 3866 |
reduction_map: Dict[str, List[str]] = None
|
| 3867 |
openai_models: List[str] = ["gpt-3.5-turbo"]
|
| 3868 |
-
anthropic_models: List[
|
| 3869 |
-
|
| 3870 |
-
|
| 3871 |
mock_models: List[str] = ["mock"]
|
| 3872 |
external_api_models = openai_models + anthropic_models
|
| 3873 |
data_classification_policy = ["public"]
|
|
@@ -4123,9 +4126,7 @@ class Perplexity(BulkInstanceMetric):
|
|
| 4123 |
model_path = self.model_name
|
| 4124 |
if settings.hf_offline_models_path is not None:
|
| 4125 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
| 4126 |
-
self.model = (
|
| 4127 |
-
self.model_class().from_pretrained(model_path).to(self.device)
|
| 4128 |
-
)
|
| 4129 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 4130 |
if self.tokenizer.pad_token_id is None:
|
| 4131 |
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
|
@@ -4291,7 +4292,7 @@ class FaithfulnessHHEM(BulkInstanceMetric):
|
|
| 4291 |
batch_size: int = 2
|
| 4292 |
model_name: str = "vectara/hallucination_evaluation_model"
|
| 4293 |
prediction_type = str
|
| 4294 |
-
|
| 4295 |
max_context_words = 4096
|
| 4296 |
reduction_map = {"mean": [main_score]}
|
| 4297 |
|
|
@@ -4308,6 +4309,7 @@ class FaithfulnessHHEM(BulkInstanceMetric):
|
|
| 4308 |
else:
|
| 4309 |
device = "cpu"
|
| 4310 |
from transformers import AutoModelForSequenceClassification
|
|
|
|
| 4311 |
model_path = self.model_name
|
| 4312 |
if settings.hf_offline_models_path is not None:
|
| 4313 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
|
@@ -5955,6 +5957,7 @@ class GraniteGuardianBase(InstanceMetric):
|
|
| 5955 |
|
| 5956 |
def prepare(self):
|
| 5957 |
from transformers import AutoTokenizer
|
|
|
|
| 5958 |
if not isinstance(self.risk_type, RiskType):
|
| 5959 |
self.risk_type = RiskType[self.risk_type]
|
| 5960 |
if not hasattr(self, "_tokenizer") or self._tokenizer is None:
|
|
@@ -6268,18 +6271,10 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6268 |
if df1.shape != df2.shape:
|
| 6269 |
return False
|
| 6270 |
|
| 6271 |
-
|
| 6272 |
-
|
| 6273 |
-
# if not return False, if all the columns worked return tue
|
| 6274 |
-
for df1_col in df1.columns:
|
| 6275 |
-
col_matched = False
|
| 6276 |
-
for df2_col in df2.columns:
|
| 6277 |
-
if all(df1[df1_col].values == df2[df2_col].values):
|
| 6278 |
-
col_matched = True
|
| 6279 |
-
if not col_matched:
|
| 6280 |
-
return False
|
| 6281 |
|
| 6282 |
-
return
|
| 6283 |
|
| 6284 |
@staticmethod
|
| 6285 |
def is_subset_ignore_colnames(df1, df2):
|
|
@@ -6381,6 +6376,8 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6381 |
gold_error,
|
| 6382 |
)
|
| 6383 |
|
|
|
|
|
|
|
| 6384 |
gold_df = pd.DataFrame(gold_res)
|
| 6385 |
non_empty_gold_df = 0 if gold_df.empty else 1
|
| 6386 |
|
|
@@ -6444,6 +6441,8 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6444 |
pred_error,
|
| 6445 |
)
|
| 6446 |
|
|
|
|
|
|
|
| 6447 |
predicted_df = pd.DataFrame(pred_res)
|
| 6448 |
|
| 6449 |
execution_result = (
|
|
|
|
| 75 |
|
| 76 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
| 77 |
|
| 78 |
+
|
| 79 |
def hf_evaluate_load(path: str, *args, **kwargs):
|
| 80 |
if settings.hf_offline_metrics_path is not None:
|
| 81 |
path = os.path.join(settings.hf_offline_metrics_path, path)
|
|
|
|
| 84 |
*args,
|
| 85 |
**kwargs,
|
| 86 |
experiment_id=str(uuid.uuid4()),
|
| 87 |
+
download_config=DownloadConfig(
|
| 88 |
+
max_retries=settings.loaders_max_retries,
|
| 89 |
+
),
|
| 90 |
+
verification_mode="no_checks",
|
| 91 |
+
trust_remote_code=settings.allow_unverified_code,
|
| 92 |
+
download_mode=(
|
| 93 |
+
"force_redownload"
|
| 94 |
+
if settings.disable_hf_datasets_cache
|
| 95 |
+
else "reuse_dataset_if_exists"
|
| 96 |
+
),
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
|
| 100 |
class MetricsList(ListCollection):
|
| 101 |
def verify(self):
|
|
|
|
| 2317 |
Documentation.HUGGINGFACE_METRICS,
|
| 2318 |
)
|
| 2319 |
|
| 2320 |
+
assert self.hf_additional_input_fields is None or isoftype(
|
| 2321 |
+
self.hf_additional_input_fields, List[str]
|
|
|
|
| 2322 |
), f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
|
| 2323 |
+
assert self.hf_additional_input_fields_pass_one_value is None or isoftype(
|
| 2324 |
+
self.hf_additional_input_fields_pass_one_value, List[str]
|
|
|
|
| 2325 |
), f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."
|
| 2326 |
|
| 2327 |
return super().verify()
|
|
|
|
| 2830 |
def prepare(self):
|
| 2831 |
super().prepare()
|
| 2832 |
|
| 2833 |
+
self._metric = hf_evaluate_load(self.metric, "multilabel")
|
|
|
|
|
|
|
| 2834 |
|
| 2835 |
def add_str_to_id(self, str):
|
| 2836 |
if str not in self.str_to_id:
|
|
|
|
| 2887 |
labels=labels_param,
|
| 2888 |
)
|
| 2889 |
if isinstance(result[self.metric], numpy.ndarray):
|
| 2890 |
+
assert len(result[self.metric]) == len(
|
| 2891 |
+
labels
|
| 2892 |
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
|
| 2893 |
final_result = {self.main_score: nan_mean(result[self.metric])}
|
| 2894 |
for i, label in enumerate(labels):
|
|
|
|
| 3627 |
if settings.hf_offline_models_path is not None:
|
| 3628 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
| 3629 |
self.pipe = pipeline(
|
| 3630 |
+
"text-classification",
|
| 3631 |
+
model=model_path,
|
| 3632 |
+
device=device,
|
| 3633 |
)
|
| 3634 |
|
| 3635 |
def compute(
|
|
|
|
| 3666 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
| 3667 |
self.regard_model = AutoModelForSequenceClassification.from_pretrained(
|
| 3668 |
model_path,
|
|
|
|
| 3669 |
)
|
| 3670 |
self.regard_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 3671 |
|
|
|
|
| 3868 |
prediction_type = str
|
| 3869 |
reduction_map: Dict[str, List[str]] = None
|
| 3870 |
openai_models: List[str] = ["gpt-3.5-turbo"]
|
| 3871 |
+
anthropic_models: List[str] = (
|
| 3872 |
+
[]
|
| 3873 |
+
) # this is here for the sake of documentation for future models
|
| 3874 |
mock_models: List[str] = ["mock"]
|
| 3875 |
external_api_models = openai_models + anthropic_models
|
| 3876 |
data_classification_policy = ["public"]
|
|
|
|
| 4126 |
model_path = self.model_name
|
| 4127 |
if settings.hf_offline_models_path is not None:
|
| 4128 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
| 4129 |
+
self.model = self.model_class().from_pretrained(model_path).to(self.device)
|
|
|
|
|
|
|
| 4130 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 4131 |
if self.tokenizer.pad_token_id is None:
|
| 4132 |
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
|
|
|
| 4292 |
batch_size: int = 2
|
| 4293 |
model_name: str = "vectara/hallucination_evaluation_model"
|
| 4294 |
prediction_type = str
|
| 4295 |
+
# single_reference_per_prediction = True
|
| 4296 |
max_context_words = 4096
|
| 4297 |
reduction_map = {"mean": [main_score]}
|
| 4298 |
|
|
|
|
| 4309 |
else:
|
| 4310 |
device = "cpu"
|
| 4311 |
from transformers import AutoModelForSequenceClassification
|
| 4312 |
+
|
| 4313 |
model_path = self.model_name
|
| 4314 |
if settings.hf_offline_models_path is not None:
|
| 4315 |
model_path = os.path.join(settings.hf_offline_models_path, model_path)
|
|
|
|
| 5957 |
|
| 5958 |
def prepare(self):
|
| 5959 |
from transformers import AutoTokenizer
|
| 5960 |
+
|
| 5961 |
if not isinstance(self.risk_type, RiskType):
|
| 5962 |
self.risk_type = RiskType[self.risk_type]
|
| 5963 |
if not hasattr(self, "_tokenizer") or self._tokenizer is None:
|
|
|
|
| 6271 |
if df1.shape != df2.shape:
|
| 6272 |
return False
|
| 6273 |
|
| 6274 |
+
df1_rows_sorted = [sorted(map(str, row)) for row in df1.to_numpy()]
|
| 6275 |
+
df2_rows_sorted = [sorted(map(str, row)) for row in df2.to_numpy()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6276 |
|
| 6277 |
+
return df1_rows_sorted == df2_rows_sorted
|
| 6278 |
|
| 6279 |
@staticmethod
|
| 6280 |
def is_subset_ignore_colnames(df1, df2):
|
|
|
|
| 6376 |
gold_error,
|
| 6377 |
)
|
| 6378 |
|
| 6379 |
+
if isinstance(gold_res, dict) and "results" in gold_res:
|
| 6380 |
+
gold_res = gold_res["results"]
|
| 6381 |
gold_df = pd.DataFrame(gold_res)
|
| 6382 |
non_empty_gold_df = 0 if gold_df.empty else 1
|
| 6383 |
|
|
|
|
| 6441 |
pred_error,
|
| 6442 |
)
|
| 6443 |
|
| 6444 |
+
if isinstance(pred_res, dict) and "results" in pred_res:
|
| 6445 |
+
pred_res = pred_res["results"]
|
| 6446 |
predicted_df = pd.DataFrame(pred_res)
|
| 6447 |
|
| 6448 |
execution_result = (
|
operator.py
CHANGED
|
@@ -157,6 +157,7 @@ class StreamingOperator(Operator, PackageRequirementsMixin):
|
|
| 157 |
"""
|
| 158 |
|
| 159 |
|
|
|
|
| 160 |
class SideEffectOperator(StreamingOperator):
|
| 161 |
"""Base class for operators that does not affect the stream."""
|
| 162 |
|
|
@@ -249,6 +250,9 @@ class SourceOperator(MultiStreamOperator):
|
|
| 249 |
pass
|
| 250 |
|
| 251 |
|
|
|
|
|
|
|
|
|
|
| 252 |
class StreamInitializerOperator(SourceOperator):
|
| 253 |
"""A class representing a stream initializer operator in the streaming system.
|
| 254 |
|
|
|
|
| 157 |
"""
|
| 158 |
|
| 159 |
|
| 160 |
+
|
| 161 |
class SideEffectOperator(StreamingOperator):
|
| 162 |
"""Base class for operators that does not affect the stream."""
|
| 163 |
|
|
|
|
| 250 |
pass
|
| 251 |
|
| 252 |
|
| 253 |
+
def get_splits(self):
|
| 254 |
+
return list(self.process().keys())
|
| 255 |
+
|
| 256 |
class StreamInitializerOperator(SourceOperator):
|
| 257 |
"""A class representing a stream initializer operator in the streaming system.
|
| 258 |
|
operators.py
CHANGED
|
@@ -1527,7 +1527,7 @@ class IntersectCorrespondingFields(InstanceOperator):
|
|
| 1527 |
|
| 1528 |
if not isinstance(self.allowed_values, list):
|
| 1529 |
raise ValueError(
|
| 1530 |
-
f"The
|
| 1531 |
)
|
| 1532 |
|
| 1533 |
def process(
|
|
|
|
| 1527 |
|
| 1528 |
if not isinstance(self.allowed_values, list):
|
| 1529 |
raise ValueError(
|
| 1530 |
+
f"The allowed_values is not a type list but '{type(self.allowed_values)}'"
|
| 1531 |
)
|
| 1532 |
|
| 1533 |
def process(
|
schema.py
CHANGED
|
@@ -151,10 +151,10 @@ class FinalizeDataset(InstanceOperatorValidator):
|
|
| 151 |
)
|
| 152 |
if "criteria" in task_data and isinstance(task_data["criteria"], Artifact):
|
| 153 |
task_data["criteria"] = self.artifact_to_jsonable(task_data["criteria"])
|
| 154 |
-
if
|
| 155 |
-
task_data[
|
| 156 |
self._get_instance_task_data(instance)
|
| 157 |
-
for instance in instance.pop(
|
| 158 |
]
|
| 159 |
|
| 160 |
instance = self.serialize_instance_fields(instance, task_data)
|
|
|
|
| 151 |
)
|
| 152 |
if "criteria" in task_data and isinstance(task_data["criteria"], Artifact):
|
| 153 |
task_data["criteria"] = self.artifact_to_jsonable(task_data["criteria"])
|
| 154 |
+
if constants.demos_field in instance:
|
| 155 |
+
task_data[constants.demos_field] = [
|
| 156 |
self._get_instance_task_data(instance)
|
| 157 |
+
for instance in instance.pop(constants.demos_field)
|
| 158 |
]
|
| 159 |
|
| 160 |
instance = self.serialize_instance_fields(instance, task_data)
|
settings_utils.py
CHANGED
|
@@ -192,6 +192,9 @@ if Constants.is_uninitilized():
|
|
| 192 |
constants.instance_stream = "__INSTANCE_STREAM__"
|
| 193 |
constants.image_tag = "unitxt-img"
|
| 194 |
constants.demos_pool_field = "_demos_pool_"
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
|
| 197 |
def get_settings() -> Settings:
|
|
|
|
| 192 |
constants.instance_stream = "__INSTANCE_STREAM__"
|
| 193 |
constants.image_tag = "unitxt-img"
|
| 194 |
constants.demos_pool_field = "_demos_pool_"
|
| 195 |
+
constants.demos_field = "demos"
|
| 196 |
+
constants.instruction_field = "instruction"
|
| 197 |
+
constants.system_prompt_field = "system_prompt"
|
| 198 |
|
| 199 |
|
| 200 |
def get_settings() -> Settings:
|
standard.py
CHANGED
|
@@ -276,7 +276,7 @@ class DatasetRecipe(SourceSequentialOperator):
|
|
| 276 |
demos_pool_field_name: str = constants.demos_pool_field
|
| 277 |
|
| 278 |
demos_taken_from: str = "train"
|
| 279 |
-
demos_field: str =
|
| 280 |
sampler: Sampler = None
|
| 281 |
|
| 282 |
# do not push demos to instances whose "demos" field is already populated
|
|
@@ -608,7 +608,7 @@ class DatasetRecipe(SourceSequentialOperator):
|
|
| 608 |
)
|
| 609 |
)
|
| 610 |
self.verbalization.steps.append(
|
| 611 |
-
GetLength(field=
|
| 612 |
)
|
| 613 |
self.verbalization.steps.append(
|
| 614 |
Set(
|
|
|
|
| 276 |
demos_pool_field_name: str = constants.demos_pool_field
|
| 277 |
|
| 278 |
demos_taken_from: str = "train"
|
| 279 |
+
demos_field: str = constants.demos_field
|
| 280 |
sampler: Sampler = None
|
| 281 |
|
| 282 |
# do not push demos to instances whose "demos" field is already populated
|
|
|
|
| 608 |
)
|
| 609 |
)
|
| 610 |
self.verbalization.steps.append(
|
| 611 |
+
GetLength(field=constants.demos_field, to_field="recipe_metadata/num_demos")
|
| 612 |
)
|
| 613 |
self.verbalization.steps.append(
|
| 614 |
Set(
|
system_prompts.py
CHANGED
|
@@ -3,7 +3,9 @@ from typing import Any, Dict, Optional
|
|
| 3 |
|
| 4 |
from .dataclass import NonPositionalField
|
| 5 |
from .operator import InstanceOperator
|
|
|
|
| 6 |
|
|
|
|
| 7 |
|
| 8 |
class SystemPrompt(InstanceOperator):
|
| 9 |
"""The role of SystemPrompt is to add task-independent opening-text to every instance."""
|
|
@@ -14,10 +16,10 @@ class SystemPrompt(InstanceOperator):
|
|
| 14 |
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 15 |
) -> Dict[str, Any]:
|
| 16 |
if self.skip_rendered_instance:
|
| 17 |
-
if
|
| 18 |
return instance
|
| 19 |
|
| 20 |
-
instance[
|
| 21 |
|
| 22 |
return instance
|
| 23 |
|
|
|
|
| 3 |
|
| 4 |
from .dataclass import NonPositionalField
|
| 5 |
from .operator import InstanceOperator
|
| 6 |
+
from .settings_utils import get_constants
|
| 7 |
|
| 8 |
+
constants = get_constants()
|
| 9 |
|
| 10 |
class SystemPrompt(InstanceOperator):
|
| 11 |
"""The role of SystemPrompt is to add task-independent opening-text to every instance."""
|
|
|
|
| 16 |
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 17 |
) -> Dict[str, Any]:
|
| 18 |
if self.skip_rendered_instance:
|
| 19 |
+
if constants.system_prompt_field in instance:
|
| 20 |
return instance
|
| 21 |
|
| 22 |
+
instance[constants.system_prompt_field] = self.get_system_prompt(instance)
|
| 23 |
|
| 24 |
return instance
|
| 25 |
|
task.py
CHANGED
|
@@ -302,9 +302,15 @@ class Task(InstanceOperator, ArtifactFetcherMixin):
|
|
| 302 |
"media": instance.get("media", {}),
|
| 303 |
"recipe_metadata": instance.get("recipe_metadata", {}),
|
| 304 |
}
|
| 305 |
-
if
|
| 306 |
# for the case of recipe.skip_demoed_instances
|
| 307 |
-
result[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
if stream_name == constants.inference_stream:
|
| 310 |
return result
|
|
|
|
| 302 |
"media": instance.get("media", {}),
|
| 303 |
"recipe_metadata": instance.get("recipe_metadata", {}),
|
| 304 |
}
|
| 305 |
+
if constants.demos_field in instance:
|
| 306 |
# for the case of recipe.skip_demoed_instances
|
| 307 |
+
result[constants.demos_field] = instance[constants.demos_field]
|
| 308 |
+
|
| 309 |
+
if constants.instruction_field in instance:
|
| 310 |
+
result[constants.instruction_field] = instance[constants.instruction_field]
|
| 311 |
+
|
| 312 |
+
if constants.system_prompt_field in instance:
|
| 313 |
+
result[constants.system_prompt_field] = instance[constants.system_prompt_field]
|
| 314 |
|
| 315 |
if stream_name == constants.inference_stream:
|
| 316 |
return result
|
templates.py
CHANGED
|
@@ -76,9 +76,9 @@ class Template(InstanceOperator):
|
|
| 76 |
self.postprocessors, List[Union[Operator, str]]
|
| 77 |
), f"The template post processors field '{self.postprocessors}' is not a list of processors. Instead it is of type '{to_type_string(type(self.postprocessors))}'."
|
| 78 |
|
| 79 |
-
def input_fields_to_instruction_and_target_prefix(self, input_fields):
|
| 80 |
instruction = self.apply_formatting(
|
| 81 |
-
input_fields, "input field",
|
| 82 |
)
|
| 83 |
target_prefix = self.apply_formatting(
|
| 84 |
input_fields,
|
|
@@ -126,13 +126,13 @@ class Template(InstanceOperator):
|
|
| 126 |
|
| 127 |
source = self.input_fields_to_source(serialized_inputs)
|
| 128 |
instruction, target_prefix = self.input_fields_to_instruction_and_target_prefix(
|
| 129 |
-
serialized_inputs
|
| 130 |
)
|
| 131 |
|
| 132 |
result = {
|
| 133 |
**instance,
|
| 134 |
"source": source,
|
| 135 |
-
|
| 136 |
"target_prefix": target_prefix,
|
| 137 |
"postprocessors": self.postprocessors,
|
| 138 |
}
|
|
|
|
| 76 |
self.postprocessors, List[Union[Operator, str]]
|
| 77 |
), f"The template post processors field '{self.postprocessors}' is not a list of processors. Instead it is of type '{to_type_string(type(self.postprocessors))}'."
|
| 78 |
|
| 79 |
+
def input_fields_to_instruction_and_target_prefix(self, input_fields, instruction):
|
| 80 |
instruction = self.apply_formatting(
|
| 81 |
+
input_fields, "input field", instruction, "instruction"
|
| 82 |
)
|
| 83 |
target_prefix = self.apply_formatting(
|
| 84 |
input_fields,
|
|
|
|
| 126 |
|
| 127 |
source = self.input_fields_to_source(serialized_inputs)
|
| 128 |
instruction, target_prefix = self.input_fields_to_instruction_and_target_prefix(
|
| 129 |
+
serialized_inputs, instance.get(constants.instruction_field, self.instruction)
|
| 130 |
)
|
| 131 |
|
| 132 |
result = {
|
| 133 |
**instance,
|
| 134 |
"source": source,
|
| 135 |
+
constants.instruction_field: instruction,
|
| 136 |
"target_prefix": target_prefix,
|
| 137 |
"postprocessors": self.postprocessors,
|
| 138 |
}
|
text_utils.py
CHANGED
|
@@ -201,7 +201,7 @@ def construct_dict_as_yaml_lines(d, indent_delta=2) -> List[str]:
|
|
| 201 |
assert (
|
| 202 |
indent_delta >= 2
|
| 203 |
), f"Needs at least 2 position indentations, for the case of list elements, that are to be preceded each by ' -'. Got indent_delta={indent_delta}."
|
| 204 |
-
res = [] #
|
| 205 |
|
| 206 |
if isinstance(d, dict):
|
| 207 |
if len(d) == 0:
|
|
@@ -236,6 +236,72 @@ def construct_dict_as_yaml_lines(d, indent_delta=2) -> List[str]:
|
|
| 236 |
d1 = f'"{d1}"'
|
| 237 |
return [d1]
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
def print_dict(
|
| 241 |
d, indent=0, indent_delta=4, max_chars=None, keys_to_print=None, log_level="info"
|
|
@@ -246,11 +312,15 @@ def print_dict(
|
|
| 246 |
|
| 247 |
|
| 248 |
def print_dict_as_yaml(d: dict, indent_delta=2) -> str:
|
| 249 |
-
yaml_lines = construct_dict_as_yaml_lines(d)
|
| 250 |
# yaml_lines = [re.sub(r"(\n+)", r'"\1"', line) for line in yaml_lines]
|
| 251 |
# yaml_lines = [line.replace("\n", "\\n") for line in yaml_lines]
|
| 252 |
return "\n".join(yaml_lines)
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
def nested_tuple_to_string(nested_tuple: tuple) -> str:
|
| 256 |
"""Converts a nested tuple to a string, with elements separated by underscores.
|
|
|
|
| 201 |
assert (
|
| 202 |
indent_delta >= 2
|
| 203 |
), f"Needs at least 2 position indentations, for the case of list elements, that are to be preceded each by ' -'. Got indent_delta={indent_delta}."
|
| 204 |
+
res = [] # computed hereunder as a list of lines, that are indented only at the end
|
| 205 |
|
| 206 |
if isinstance(d, dict):
|
| 207 |
if len(d) == 0:
|
|
|
|
| 236 |
d1 = f'"{d1}"'
|
| 237 |
return [d1]
|
| 238 |
|
| 239 |
+
def construct_dict_as_python_lines(d, indent_delta=4) -> List[str]:
|
| 240 |
+
"""Constructs the lines of a dictionary formatted as a piece of python code.
|
| 241 |
+
|
| 242 |
+
Args:
|
| 243 |
+
d: The element to be formatted.
|
| 244 |
+
indent_delta (int, optional): The amount of spaces to add for each level of indentation. Defaults to 2.
|
| 245 |
+
"""
|
| 246 |
+
indent_delta_str = " " * indent_delta
|
| 247 |
+
res = [] # computed hereunder as a list of lines, that are indented only at the end
|
| 248 |
+
|
| 249 |
+
if isinstance(d, dict):
|
| 250 |
+
istype = False
|
| 251 |
+
if len(d) == 0:
|
| 252 |
+
return ["{}"]
|
| 253 |
+
if "__type__" in d:
|
| 254 |
+
istype = True
|
| 255 |
+
res = ["__type__" + d["__type__"] + "("]
|
| 256 |
+
if len(d) == 1:
|
| 257 |
+
res[0] += ")"
|
| 258 |
+
return res
|
| 259 |
+
else:
|
| 260 |
+
res = ["{"]
|
| 261 |
+
for key, val in d.items():
|
| 262 |
+
if key == "__type__":
|
| 263 |
+
continue
|
| 264 |
+
printable_key = f'"{key}"' if not istype else key
|
| 265 |
+
res.append(printable_key + ("=" if istype else ": "))
|
| 266 |
+
py_for_val = construct_dict_as_python_lines(val, indent_delta=indent_delta)
|
| 267 |
+
assert len(py_for_val) > 0
|
| 268 |
+
if len(py_for_val) == 1:
|
| 269 |
+
res[-1] += (py_for_val[0] +",")
|
| 270 |
+
else:
|
| 271 |
+
res[-1] += py_for_val[0]
|
| 272 |
+
if py_for_val[0].startswith("{") or py_for_val[0].startswith("["):
|
| 273 |
+
for line in py_for_val[1:-1]:
|
| 274 |
+
res.append(indent_delta_str + line)
|
| 275 |
+
else:
|
| 276 |
+
# val is type, its inner lines are already indented
|
| 277 |
+
res.extend(py_for_val[1:-1])
|
| 278 |
+
res.append(py_for_val[-1]+",")
|
| 279 |
+
res.append(")" if istype else "}")
|
| 280 |
+
if istype:
|
| 281 |
+
for i in range(1,len(res)-1):
|
| 282 |
+
res[i] = indent_delta_str+res[i]
|
| 283 |
+
return res
|
| 284 |
+
|
| 285 |
+
if isinstance(d, list):
|
| 286 |
+
if len(d) == 0:
|
| 287 |
+
return ["[]"]
|
| 288 |
+
res = ["["]
|
| 289 |
+
for val in d:
|
| 290 |
+
py_for_val = construct_dict_as_python_lines(val, indent_delta=indent_delta)
|
| 291 |
+
assert len(py_for_val) > 0
|
| 292 |
+
for line in py_for_val[:-1]:
|
| 293 |
+
res.append(line)
|
| 294 |
+
res.append(py_for_val[-1] + ",")
|
| 295 |
+
res.append("]")
|
| 296 |
+
return res
|
| 297 |
+
|
| 298 |
+
# d1 = re.sub(r"(\n+)", r'"\1"', str(d))
|
| 299 |
+
if isinstance(d, str):
|
| 300 |
+
return [f'"{d}"']
|
| 301 |
+
if d is None or isinstance (d, (int, float, bool)):
|
| 302 |
+
return [f"{d}"]
|
| 303 |
+
raise RuntimeError(f"unrecognized value to print as python: {d}")
|
| 304 |
+
|
| 305 |
|
| 306 |
def print_dict(
|
| 307 |
d, indent=0, indent_delta=4, max_chars=None, keys_to_print=None, log_level="info"
|
|
|
|
| 312 |
|
| 313 |
|
| 314 |
def print_dict_as_yaml(d: dict, indent_delta=2) -> str:
|
| 315 |
+
yaml_lines = construct_dict_as_yaml_lines(d, indent_delta=indent_delta)
|
| 316 |
# yaml_lines = [re.sub(r"(\n+)", r'"\1"', line) for line in yaml_lines]
|
| 317 |
# yaml_lines = [line.replace("\n", "\\n") for line in yaml_lines]
|
| 318 |
return "\n".join(yaml_lines)
|
| 319 |
|
| 320 |
+
def print_dict_as_python(d: dict, indent_delta=4) -> str:
|
| 321 |
+
py_lines = construct_dict_as_python_lines(d, indent_delta=indent_delta)
|
| 322 |
+
assert len(py_lines)> 0
|
| 323 |
+
return "\n".join(py_lines)
|
| 324 |
|
| 325 |
def nested_tuple_to_string(nested_tuple: tuple) -> str:
|
| 326 |
"""Converts a nested tuple to a string, with elements separated by underscores.
|
version.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
version = "1.
|
|
|
|
| 1 |
+
version = "1.20.0"
|