Upload folder using huggingface_hub
Browse files- artifact.py +1 -2
- blocks.py +1 -1
- collections_operators.py +6 -1
- data.py +1 -0
- error_utils.py +50 -0
- generator_utils.py +2 -2
- inference.py +44 -29
- loaders.py +1 -1
- metric.py +1 -0
- metric_utils.py +1 -1
- metrics.py +152 -44
- operators.py +1 -2
- schema.py +14 -11
- splitters.py +56 -47
- standard.py +114 -67
- stream.py +1 -1
- struct_data_operators.py +1 -1
- task.py +27 -15
- templates.py +76 -21
- utils.py +5 -0
- version.py +1 -1
artifact.py
CHANGED
|
@@ -5,7 +5,6 @@ import os
|
|
| 5 |
import pkgutil
|
| 6 |
import re
|
| 7 |
from abc import abstractmethod
|
| 8 |
-
from copy import deepcopy
|
| 9 |
from typing import Any, Dict, List, Optional, Tuple, Union, final
|
| 10 |
|
| 11 |
from .dataclass import (
|
|
@@ -23,7 +22,7 @@ from .parsing_utils import (
|
|
| 23 |
from .settings_utils import get_constants, get_settings
|
| 24 |
from .text_utils import camel_to_snake_case, is_camel_case
|
| 25 |
from .type_utils import issubtype
|
| 26 |
-
from .utils import artifacts_json_cache, json_dump, save_to_file
|
| 27 |
|
| 28 |
logger = get_logger()
|
| 29 |
settings = get_settings()
|
|
|
|
| 5 |
import pkgutil
|
| 6 |
import re
|
| 7 |
from abc import abstractmethod
|
|
|
|
| 8 |
from typing import Any, Dict, List, Optional, Tuple, Union, final
|
| 9 |
|
| 10 |
from .dataclass import (
|
|
|
|
| 22 |
from .settings_utils import get_constants, get_settings
|
| 23 |
from .text_utils import camel_to_snake_case, is_camel_case
|
| 24 |
from .type_utils import issubtype
|
| 25 |
+
from .utils import artifacts_json_cache, deepcopy, json_dump, save_to_file
|
| 26 |
|
| 27 |
logger = get_logger()
|
| 28 |
settings = get_settings()
|
blocks.py
CHANGED
|
@@ -18,7 +18,7 @@ from .operators import (
|
|
| 18 |
)
|
| 19 |
from .processors import ToString, ToStringStripped
|
| 20 |
from .recipe import SequentialRecipe
|
| 21 |
-
from .splitters import RandomSampler, SliceSplit, SplitRandomMix
|
| 22 |
from .stream import MultiStream
|
| 23 |
from .struct_data_operators import (
|
| 24 |
ListToKeyValPairs,
|
|
|
|
| 18 |
)
|
| 19 |
from .processors import ToString, ToStringStripped
|
| 20 |
from .recipe import SequentialRecipe
|
| 21 |
+
from .splitters import RandomSampler, Sample, SliceSplit, SplitRandomMix
|
| 22 |
from .stream import MultiStream
|
| 23 |
from .struct_data_operators import (
|
| 24 |
ListToKeyValPairs,
|
collections_operators.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
from copy import deepcopy
|
| 2 |
from typing import Any, Generator, List, Optional
|
| 3 |
|
| 4 |
from .operators import FieldOperator, StreamOperator
|
| 5 |
from .stream import Stream
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class Dictify(FieldOperator):
|
|
@@ -100,3 +100,8 @@ class DuplicateBySubLists(StreamOperator):
|
|
| 100 |
to_field: elements[:i],
|
| 101 |
}
|
| 102 |
yield instance_copy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Any, Generator, List, Optional
|
| 2 |
|
| 3 |
from .operators import FieldOperator, StreamOperator
|
| 4 |
from .stream import Stream
|
| 5 |
+
from .utils import deepcopy
|
| 6 |
|
| 7 |
|
| 8 |
class Dictify(FieldOperator):
|
|
|
|
| 100 |
to_field: elements[:i],
|
| 101 |
}
|
| 102 |
yield instance_copy
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class GetLength(FieldOperator):
|
| 106 |
+
def process_value(self, collection: Any) -> Any:
|
| 107 |
+
return len(collection)
|
data.py
CHANGED
|
@@ -15,6 +15,7 @@ from .dataset_utils import get_dataset_artifact
|
|
| 15 |
from .deprecation_utils import __file__ as _
|
| 16 |
from .dialog_operators import __file__ as _
|
| 17 |
from .dict_utils import __file__ as _
|
|
|
|
| 18 |
from .eval_utils import __file__ as _
|
| 19 |
from .file_utils import __file__ as _
|
| 20 |
from .formats import __file__ as _
|
|
|
|
| 15 |
from .deprecation_utils import __file__ as _
|
| 16 |
from .dialog_operators import __file__ as _
|
| 17 |
from .dict_utils import __file__ as _
|
| 18 |
+
from .error_utils import __file__ as _
|
| 19 |
from .eval_utils import __file__ as _
|
| 20 |
from .file_utils import __file__ as _
|
| 21 |
from .formats import __file__ as _
|
error_utils.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
from .logging_utils import get_logger
|
| 4 |
+
|
| 5 |
+
logger = get_logger()
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Documentation:
|
| 9 |
+
URL = "https://www.unitxt.ai/en/latest/"
|
| 10 |
+
HUGGINGFACE_METRICS = "docs/adding_metric.html#adding-a-hugginface-metric"
|
| 11 |
+
ADDING_TASK = "docs/adding_task.html"
|
| 12 |
+
ADDING_TEMPLATE = "docs/adding_template.html"
|
| 13 |
+
MULTIPLE_METRICS_OUTPUTS = (
|
| 14 |
+
"docs/adding_metric.html#metric-outputs-with-multiple-metrics"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def additional_info(path: str) -> str:
|
| 19 |
+
return f"\nFor more information: see {Documentation.URL}/{path} \n"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class UnitxtError(Exception):
|
| 23 |
+
"""Exception raised for Unitxt errors.
|
| 24 |
+
|
| 25 |
+
Attributes:
|
| 26 |
+
message : str -- explanation of the error
|
| 27 |
+
additional_info_id : Optional[str] -- relative path to additional documentation on web
|
| 28 |
+
If set, should be one of the DOCUMENATION_* constants in the error_utils.py file.
|
| 29 |
+
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, message: str, additional_info_id: Optional[str] = None):
|
| 33 |
+
if additional_info_id is not None:
|
| 34 |
+
message += additional_info(additional_info_id)
|
| 35 |
+
super().__init__(message)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class UnitxtWarning:
|
| 39 |
+
"""Object to format warning message to log.
|
| 40 |
+
|
| 41 |
+
Attributes:
|
| 42 |
+
message -- explanation of the warning
|
| 43 |
+
additional_info_id : Optional[str] -- relative path to additional documentation on web
|
| 44 |
+
If set, should be one of the DOCUMENATION_* constants in the error_utils.py file.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
def __init__(self, message: str, additional_info_id: Optional[str] = None):
|
| 48 |
+
if additional_info_id is not None:
|
| 49 |
+
message += additional_info(additional_info_id)
|
| 50 |
+
logger.warning(message)
|
generator_utils.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
import copy
|
| 2 |
from typing import Any, Dict, List
|
| 3 |
|
| 4 |
from .dataclass import Dataclass, OptionalField
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class ReusableGenerator(Dataclass):
|
|
@@ -22,7 +22,7 @@ class ReusableGenerator(Dataclass):
|
|
| 22 |
class CopyingReusableGenerator(ReusableGenerator):
|
| 23 |
def __iter__(self):
|
| 24 |
for instance in self.activate():
|
| 25 |
-
yield
|
| 26 |
|
| 27 |
|
| 28 |
# if __name__ == "__main__":
|
|
|
|
|
|
|
| 1 |
from typing import Any, Dict, List
|
| 2 |
|
| 3 |
from .dataclass import Dataclass, OptionalField
|
| 4 |
+
from .utils import deepcopy
|
| 5 |
|
| 6 |
|
| 7 |
class ReusableGenerator(Dataclass):
|
|
|
|
| 22 |
class CopyingReusableGenerator(ReusableGenerator):
|
| 23 |
def __iter__(self):
|
| 24 |
for instance in self.activate():
|
| 25 |
+
yield deepcopy(instance)
|
| 26 |
|
| 27 |
|
| 28 |
# if __name__ == "__main__":
|
inference.py
CHANGED
|
@@ -5,6 +5,7 @@ from typing import Any, Dict, List, Literal, Optional, Union
|
|
| 5 |
from tqdm import tqdm
|
| 6 |
|
| 7 |
from .artifact import Artifact
|
|
|
|
| 8 |
from .deprecation_utils import deprecation
|
| 9 |
from .logging_utils import get_logger
|
| 10 |
from .operator import PackageRequirementsMixin
|
|
@@ -376,13 +377,11 @@ class WMLInferenceEngine(
|
|
| 376 |
"""Runs inference using ibm-watsonx-ai.
|
| 377 |
|
| 378 |
Attributes:
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
"project_id", or an instance of 'ibm_watsonx_ai.credentials.Credentials'
|
| 385 |
-
can be directly provided instead.
|
| 386 |
model_name (str, optional): ID of a model to be used for inference. Mutually
|
| 387 |
exclusive with 'deployment_id'.
|
| 388 |
deployment_id (str, optional): Deployment ID of a tuned model to be used for
|
|
@@ -412,8 +411,7 @@ class WMLInferenceEngine(
|
|
| 412 |
results = wml_inference.infer(dataset["test"])
|
| 413 |
"""
|
| 414 |
|
| 415 |
-
|
| 416 |
-
credentials: Any = None
|
| 417 |
model_name: Optional[str] = None
|
| 418 |
deployment_id: Optional[str] = None
|
| 419 |
label: str = "wml"
|
|
@@ -422,11 +420,40 @@ class WMLInferenceEngine(
|
|
| 422 |
"It is advised to have Python version >=3.10 installed, as at lower version this package "
|
| 423 |
"may cause conflicts with other installed packages."
|
| 424 |
}
|
| 425 |
-
data_classification_policy = ["proprietary"]
|
| 426 |
parameters: Optional[WMLInferenceEngineParams] = None
|
| 427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
@staticmethod
|
| 429 |
-
def _read_wml_credentials_from_env() ->
|
|
|
|
|
|
|
| 430 |
credentials = {}
|
| 431 |
for env_var_name in ["WML_URL", "WML_PROJECT_ID", "WML_APIKEY"]:
|
| 432 |
env_var = os.environ.get(env_var_name)
|
|
@@ -453,32 +480,20 @@ class WMLInferenceEngine(
|
|
| 453 |
return client
|
| 454 |
|
| 455 |
def prepare(self):
|
| 456 |
-
|
| 457 |
-
self.client = self._initialize_wml_client()
|
| 458 |
|
| 459 |
self._set_inference_parameters()
|
| 460 |
|
| 461 |
-
def verify(self):
|
| 462 |
-
assert (
|
| 463 |
-
self.model_name
|
| 464 |
-
or self.deployment_id
|
| 465 |
-
and not (self.model_name and self.deployment_id)
|
| 466 |
-
), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."
|
| 467 |
-
super().verify()
|
| 468 |
-
|
| 469 |
def _infer(self, dataset):
|
| 470 |
from ibm_watsonx_ai.foundation_models import ModelInference
|
| 471 |
|
| 472 |
model = ModelInference(
|
| 473 |
model_id=self.model_name,
|
| 474 |
deployment_id=self.deployment_id,
|
| 475 |
-
api_client=self.
|
| 476 |
)
|
| 477 |
|
| 478 |
-
return
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
)
|
| 483 |
-
for instance in dataset
|
| 484 |
-
]
|
|
|
|
| 5 |
from tqdm import tqdm
|
| 6 |
|
| 7 |
from .artifact import Artifact
|
| 8 |
+
from .dataclass import InternalField
|
| 9 |
from .deprecation_utils import deprecation
|
| 10 |
from .logging_utils import get_logger
|
| 11 |
from .operator import PackageRequirementsMixin
|
|
|
|
| 377 |
"""Runs inference using ibm-watsonx-ai.
|
| 378 |
|
| 379 |
Attributes:
|
| 380 |
+
credentials (Dict[str, str], optional): By default, it is created by a class
|
| 381 |
+
instance which tries to retrieve proper environment variables
|
| 382 |
+
("WML_URL", "WML_PROJECT_ID", "WML_APIKEY"). However, a dictionary with
|
| 383 |
+
the following keys: "url", "apikey", "project_id" can be directly provided
|
| 384 |
+
instead.
|
|
|
|
|
|
|
| 385 |
model_name (str, optional): ID of a model to be used for inference. Mutually
|
| 386 |
exclusive with 'deployment_id'.
|
| 387 |
deployment_id (str, optional): Deployment ID of a tuned model to be used for
|
|
|
|
| 411 |
results = wml_inference.infer(dataset["test"])
|
| 412 |
"""
|
| 413 |
|
| 414 |
+
credentials: Optional[Dict[Literal["url", "apikey", "project_id"], str]] = None
|
|
|
|
| 415 |
model_name: Optional[str] = None
|
| 416 |
deployment_id: Optional[str] = None
|
| 417 |
label: str = "wml"
|
|
|
|
| 420 |
"It is advised to have Python version >=3.10 installed, as at lower version this package "
|
| 421 |
"may cause conflicts with other installed packages."
|
| 422 |
}
|
| 423 |
+
data_classification_policy = ["public", "proprietary"]
|
| 424 |
parameters: Optional[WMLInferenceEngineParams] = None
|
| 425 |
|
| 426 |
+
_client: Any = InternalField(default=None, name="WML client")
|
| 427 |
+
|
| 428 |
+
def verify(self):
|
| 429 |
+
super().verify()
|
| 430 |
+
|
| 431 |
+
if self.credentials is not None:
|
| 432 |
+
for key in self.credentials:
|
| 433 |
+
if key not in ["url", "apikey", "project_id"]:
|
| 434 |
+
raise ValueError(
|
| 435 |
+
f'Illegal credential key: {key}, use only ["url", "apikey", "project_id"]'
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
assert (
|
| 439 |
+
self.model_name
|
| 440 |
+
or self.deployment_id
|
| 441 |
+
and not (self.model_name and self.deployment_id)
|
| 442 |
+
), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."
|
| 443 |
+
|
| 444 |
+
def process_data_before_dump(self, data):
|
| 445 |
+
if "credentials" in data:
|
| 446 |
+
for key, value in data["credentials"].items():
|
| 447 |
+
if key != "url":
|
| 448 |
+
data["credentials"][key] = "<hidden>"
|
| 449 |
+
else:
|
| 450 |
+
data["credentials"][key] = value
|
| 451 |
+
return data
|
| 452 |
+
|
| 453 |
@staticmethod
|
| 454 |
+
def _read_wml_credentials_from_env() -> (
|
| 455 |
+
Dict[Literal["url", "apikey", "project_id"], str]
|
| 456 |
+
):
|
| 457 |
credentials = {}
|
| 458 |
for env_var_name in ["WML_URL", "WML_PROJECT_ID", "WML_APIKEY"]:
|
| 459 |
env_var = os.environ.get(env_var_name)
|
|
|
|
| 480 |
return client
|
| 481 |
|
| 482 |
def prepare(self):
|
| 483 |
+
self._client = self._initialize_wml_client()
|
|
|
|
| 484 |
|
| 485 |
self._set_inference_parameters()
|
| 486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
def _infer(self, dataset):
|
| 488 |
from ibm_watsonx_ai.foundation_models import ModelInference
|
| 489 |
|
| 490 |
model = ModelInference(
|
| 491 |
model_id=self.model_name,
|
| 492 |
deployment_id=self.deployment_id,
|
| 493 |
+
api_client=self._client,
|
| 494 |
)
|
| 495 |
|
| 496 |
+
return model.generate_text(
|
| 497 |
+
prompt=dataset["source"],
|
| 498 |
+
params=self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False),
|
| 499 |
+
)
|
|
|
|
|
|
|
|
|
loaders.py
CHANGED
|
@@ -36,7 +36,6 @@ import itertools
|
|
| 36 |
import os
|
| 37 |
import tempfile
|
| 38 |
from abc import abstractmethod
|
| 39 |
-
from copy import deepcopy
|
| 40 |
from pathlib import Path
|
| 41 |
from tempfile import TemporaryDirectory
|
| 42 |
from typing import Any, Dict, List, Mapping, Optional, Sequence, Union
|
|
@@ -54,6 +53,7 @@ from .operators import Set
|
|
| 54 |
from .settings_utils import get_settings
|
| 55 |
from .stream import DynamicStream, MultiStream
|
| 56 |
from .type_utils import isoftype
|
|
|
|
| 57 |
|
| 58 |
logger = get_logger()
|
| 59 |
settings = get_settings()
|
|
|
|
| 36 |
import os
|
| 37 |
import tempfile
|
| 38 |
from abc import abstractmethod
|
|
|
|
| 39 |
from pathlib import Path
|
| 40 |
from tempfile import TemporaryDirectory
|
| 41 |
from typing import Any, Dict, List, Mapping, Optional, Sequence, Union
|
|
|
|
| 53 |
from .settings_utils import get_settings
|
| 54 |
from .stream import DynamicStream, MultiStream
|
| 55 |
from .type_utils import isoftype
|
| 56 |
+
from .utils import deepcopy
|
| 57 |
|
| 58 |
logger = get_logger()
|
| 59 |
settings = get_settings()
|
metric.py
CHANGED
|
@@ -14,6 +14,7 @@ from .dataset_utils import __file__ as _
|
|
| 14 |
from .deprecation_utils import __file__ as _
|
| 15 |
from .dialog_operators import __file__ as _
|
| 16 |
from .dict_utils import __file__ as _
|
|
|
|
| 17 |
from .eval_utils import __file__ as _
|
| 18 |
from .file_utils import __file__ as _
|
| 19 |
from .formats import __file__ as _
|
|
|
|
| 14 |
from .deprecation_utils import __file__ as _
|
| 15 |
from .dialog_operators import __file__ as _
|
| 16 |
from .dict_utils import __file__ as _
|
| 17 |
+
from .error_utils import __file__ as _
|
| 18 |
from .eval_utils import __file__ as _
|
| 19 |
from .file_utils import __file__ as _
|
| 20 |
from .formats import __file__ as _
|
metric_utils.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import json
|
| 2 |
-
from copy import deepcopy
|
| 3 |
from typing import Any, Dict, Generator, Iterable, List, Optional
|
| 4 |
|
| 5 |
from datasets import Features, Value
|
|
@@ -27,6 +26,7 @@ from .schema import UNITXT_DATASET_SCHEMA
|
|
| 27 |
from .settings_utils import get_settings
|
| 28 |
from .stream import DynamicStream, MultiStream
|
| 29 |
from .struct_data_operators import LoadJson
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
class MultiStreamScoreMean(MultiStreamOperator):
|
|
|
|
| 1 |
import json
|
|
|
|
| 2 |
from typing import Any, Dict, Generator, Iterable, List, Optional
|
| 3 |
|
| 4 |
from datasets import Features, Value
|
|
|
|
| 26 |
from .settings_utils import get_settings
|
| 27 |
from .stream import DynamicStream, MultiStream
|
| 28 |
from .struct_data_operators import LoadJson
|
| 29 |
+
from .utils import deepcopy
|
| 30 |
|
| 31 |
|
| 32 |
class MultiStreamScoreMean(MultiStreamOperator):
|
metrics.py
CHANGED
|
@@ -1,15 +1,14 @@
|
|
| 1 |
import ast
|
| 2 |
import json
|
|
|
|
| 3 |
import re
|
| 4 |
import string
|
| 5 |
import uuid
|
| 6 |
import warnings
|
| 7 |
from abc import ABC, abstractmethod
|
| 8 |
from collections import Counter, defaultdict
|
| 9 |
-
from copy import deepcopy
|
| 10 |
from dataclasses import field
|
| 11 |
from operator import itemgetter
|
| 12 |
-
from statistics import mean
|
| 13 |
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
|
| 14 |
|
| 15 |
import evaluate
|
|
@@ -22,11 +21,13 @@ from scipy.stats._warnings_errors import DegenerateDataWarning
|
|
| 22 |
from .artifact import Artifact, fetch_artifact
|
| 23 |
from .dataclass import (
|
| 24 |
AbstractField,
|
|
|
|
| 25 |
InternalField,
|
| 26 |
NonPositionalField,
|
| 27 |
OptionalField,
|
| 28 |
)
|
| 29 |
from .deprecation_utils import deprecation
|
|
|
|
| 30 |
from .inference import HFPipelineBasedInferenceEngine, InferenceEngine
|
| 31 |
from .logging_utils import get_logger
|
| 32 |
from .metric_utils import InstanceInput, MetricRequest, MetricResponse
|
|
@@ -42,6 +43,7 @@ from .random_utils import get_seed
|
|
| 42 |
from .settings_utils import get_settings
|
| 43 |
from .stream import MultiStream, Stream
|
| 44 |
from .type_utils import Type, isoftype, parse_type_string, to_type_string
|
|
|
|
| 45 |
|
| 46 |
logger = get_logger()
|
| 47 |
settings = get_settings()
|
|
@@ -141,13 +143,25 @@ class Metric(Artifact):
|
|
| 141 |
else score_name
|
| 142 |
)
|
| 143 |
|
| 144 |
-
def
|
|
|
|
|
|
|
| 145 |
new_scores = {}
|
| 146 |
for score_name, score in scores.items():
|
| 147 |
score_with_prefix = self._add_score_prefix(score_name)
|
| 148 |
new_scores[score_with_prefix] = (
|
| 149 |
score if score_name not in ["score_name"] else self.score_prefix + score
|
| 150 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
return new_scores
|
| 152 |
|
| 153 |
def _validate_references_and_prediction(self, references, predictions):
|
|
@@ -238,12 +252,14 @@ class Metric(Artifact):
|
|
| 238 |
def disable_confidence_interval_calculation(self):
|
| 239 |
pass
|
| 240 |
|
| 241 |
-
# update instance["score"]["global"] with the
|
| 242 |
-
# current metric
|
| 243 |
-
# (the main_score of) the current metric.
|
|
|
|
| 244 |
# A simple python-dictionary-update adds new fields to instance["score"]["global"], and also replaces the values
|
| 245 |
-
# of its fields "score" and "score_name"
|
| 246 |
-
#
|
|
|
|
| 247 |
# When global_score does NOT contain ci score (because CI was not computed for the current metric), but
|
| 248 |
# one of the previous metrics computed did have, the last of such previous metrics set the values in
|
| 249 |
# fields "score_ci_low" and "score_ci_high" in instance["score"]["global"] to reflect its
|
|
@@ -254,15 +270,25 @@ class Metric(Artifact):
|
|
| 254 |
# therefore, not consistent with "score_name".
|
| 255 |
# In such a case, following the python-dictionary-update, we pop out fields "score_ci_low" and
|
| 256 |
# "score_ci_high" from instance["score"]["global"], so that now all the fields "score.." in
|
| 257 |
-
# instance["score"]["global"] are consistent with the current metric: The
|
| 258 |
-
#
|
| 259 |
# field instance["score"]["global"]["score"], and it does not have ci_scores,
|
| 260 |
# which is also reflected in the absence of fields "score_ci_low" and "score_ci_high" from instance["score"]["global"].
|
| 261 |
# If ci IS computed for the current metric, global_score contains "score_ci_low" and "score_ci_high", and these overwrite
|
| 262 |
-
# the ones existing in instance["score"]["global"] by
|
| 263 |
def update_and_adjust_global_score(
|
| 264 |
self, instance: Dict[str, Any], global_score: dict
|
| 265 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
instance["score"]["global"].update(global_score)
|
| 267 |
for score_ci in ["score_ci_low", "score_ci_high"]:
|
| 268 |
if score_ci in global_score:
|
|
@@ -559,12 +585,18 @@ class GlobalMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
| 559 |
instance_score[self.main_score] = no_score_value
|
| 560 |
|
| 561 |
instance["score"]["instance"].update(
|
| 562 |
-
self.
|
|
|
|
|
|
|
| 563 |
)
|
| 564 |
self._validate_references_and_prediction(references, predictions)
|
| 565 |
|
| 566 |
result = self._compute(references, predictions, task_data)
|
| 567 |
-
global_score.update(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
score_name = global_score["score_name"]
|
| 569 |
confidence_interval = self.compute_global_confidence_intervals(
|
| 570 |
references, predictions, task_data, score_name
|
|
@@ -657,7 +689,9 @@ class BulkInstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
| 657 |
instance["score"] = {"global": {}, "instance": {}}
|
| 658 |
|
| 659 |
instance["score"]["instance"].update(
|
| 660 |
-
self.
|
|
|
|
|
|
|
| 661 |
)
|
| 662 |
instances.append(instance)
|
| 663 |
|
|
@@ -669,7 +703,7 @@ class BulkInstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
| 669 |
if reduction == "mean":
|
| 670 |
for field_name in fields:
|
| 671 |
field_name_with_prefix = self._add_score_prefix(field_name)
|
| 672 |
-
global_score[field_name_with_prefix] =
|
| 673 |
[
|
| 674 |
instance["score"]["instance"][field_name_with_prefix]
|
| 675 |
for instance in instances
|
|
@@ -1140,7 +1174,9 @@ class InstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
| 1140 |
instance["score"] = {"global": {}, "instance": {}}
|
| 1141 |
|
| 1142 |
instance["score"]["instance"].update(
|
| 1143 |
-
self.
|
|
|
|
|
|
|
| 1144 |
)
|
| 1145 |
|
| 1146 |
instances.append(instance)
|
|
@@ -1326,7 +1362,6 @@ class StringContainment(InstanceMetric):
|
|
| 1326 |
ci_scores = ["string_containment"]
|
| 1327 |
|
| 1328 |
prediction_type = Any # string representation is compared
|
| 1329 |
-
single_reference_per_prediction = False # multiple references allowed
|
| 1330 |
|
| 1331 |
def compute(
|
| 1332 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
|
@@ -1341,11 +1376,59 @@ class StringContainment(InstanceMetric):
|
|
| 1341 |
return result
|
| 1342 |
|
| 1343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1344 |
class MetricPipeline(MultiStreamOperator, Metric):
|
| 1345 |
main_score: str = None
|
| 1346 |
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 1347 |
-
|
| 1348 |
-
|
|
|
|
|
|
|
|
|
|
| 1349 |
)
|
| 1350 |
metric: Metric = None
|
| 1351 |
|
|
@@ -1366,6 +1449,23 @@ class MetricPipeline(MultiStreamOperator, Metric):
|
|
| 1366 |
|
| 1367 |
def prepare(self):
|
| 1368 |
super().prepare()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1369 |
self.prepare_score = Copy(
|
| 1370 |
field_to_field=[
|
| 1371 |
[
|
|
@@ -1383,7 +1483,7 @@ class MetricPipeline(MultiStreamOperator, Metric):
|
|
| 1383 |
for step in self.preprocess_steps:
|
| 1384 |
multi_stream = step(multi_stream)
|
| 1385 |
multi_stream = self.metric(multi_stream)
|
| 1386 |
-
for step in self.
|
| 1387 |
multi_stream = step(multi_stream)
|
| 1388 |
return self.prepare_score(multi_stream)
|
| 1389 |
|
|
@@ -1409,6 +1509,13 @@ class HuggingfaceMetric(GlobalMetric):
|
|
| 1409 |
experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))
|
| 1410 |
|
| 1411 |
def verify(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1412 |
assert (
|
| 1413 |
self.hf_additional_input_fields is None
|
| 1414 |
or isoftype(self.hf_additional_input_fields, List[str])
|
|
@@ -1654,7 +1761,7 @@ class F1(GlobalMetric):
|
|
| 1654 |
average=self.average,
|
| 1655 |
)
|
| 1656 |
if isinstance(result[self.metric], numpy.ndarray):
|
| 1657 |
-
final_result = {self.main_score:
|
| 1658 |
for i, label in enumerate(labels):
|
| 1659 |
final_result[f"{self.metric}_" + self.id_to_str[label]] = result[
|
| 1660 |
self.metric
|
|
@@ -1959,7 +2066,7 @@ class F1MultiLabel(GlobalMetric):
|
|
| 1959 |
assert (
|
| 1960 |
len(result[self.metric]) == len(labels)
|
| 1961 |
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
|
| 1962 |
-
final_result = {self.main_score:
|
| 1963 |
for i, label in enumerate(labels):
|
| 1964 |
final_result[self.metric + "_" + label] = result[self.metric][i]
|
| 1965 |
else:
|
|
@@ -2001,7 +2108,17 @@ class F1MacroMultiLabel(F1MultiLabel):
|
|
| 2001 |
average = None
|
| 2002 |
|
| 2003 |
|
| 2004 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2005 |
main_score = "rougeL"
|
| 2006 |
prediction_type = str
|
| 2007 |
single_reference_per_prediction = False # multiple references allowed
|
|
@@ -2014,21 +2131,17 @@ class Rouge(InstanceMetric):
|
|
| 2014 |
|
| 2015 |
def prepare(self):
|
| 2016 |
super().prepare()
|
| 2017 |
-
import nltk
|
| 2018 |
from rouge_score import rouge_scorer
|
| 2019 |
|
| 2020 |
self.rouge_scorer = rouge_scorer
|
| 2021 |
|
| 2022 |
-
nltk.download("punkt", quiet=True)
|
| 2023 |
-
self.sent_tokenize = nltk.sent_tokenize
|
| 2024 |
-
|
| 2025 |
def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
|
| 2026 |
# for a single instance, prediction is of type str, and references: list of str
|
| 2027 |
if self.sent_split_newline:
|
| 2028 |
-
prediction = "\n".join(self.sent_tokenize(prediction.strip()))
|
| 2029 |
|
| 2030 |
references = [
|
| 2031 |
-
"\n".join(self.sent_tokenize(reference.strip()))
|
| 2032 |
for reference in references
|
| 2033 |
]
|
| 2034 |
|
|
@@ -2044,7 +2157,7 @@ class Rouge(InstanceMetric):
|
|
| 2044 |
return score
|
| 2045 |
|
| 2046 |
|
| 2047 |
-
class RougeHF(HuggingfaceInstanceMetric):
|
| 2048 |
hf_metric_name = "rouge"
|
| 2049 |
main_score = "rougeL"
|
| 2050 |
scale = 1.0
|
|
@@ -2070,18 +2183,13 @@ class RougeHF(HuggingfaceInstanceMetric):
|
|
| 2070 |
{"use_aggregator": False, "rouge_types": self.rouge_types}
|
| 2071 |
)
|
| 2072 |
|
| 2073 |
-
import nltk
|
| 2074 |
-
|
| 2075 |
-
nltk.download("punkt", quiet=True)
|
| 2076 |
-
self.sent_tokenize = nltk.sent_tokenize
|
| 2077 |
-
|
| 2078 |
def compute(self, references, prediction, task_data: List[Dict]):
|
| 2079 |
# for a single instance, prediction is of type str, and references: list of str
|
| 2080 |
if self.sent_split_newline:
|
| 2081 |
-
prediction = "\n".join(self.sent_tokenize(prediction.strip()))
|
| 2082 |
|
| 2083 |
references = [
|
| 2084 |
-
"\n".join(self.sent_tokenize(reference.strip()))
|
| 2085 |
for reference in references
|
| 2086 |
]
|
| 2087 |
|
|
@@ -3360,7 +3468,7 @@ class NDCG(GlobalMetric):
|
|
| 3360 |
for pred in q_predictions
|
| 3361 |
]
|
| 3362 |
scores.append(self.eval([q_references], [q_predictions]))
|
| 3363 |
-
return {self.main_score:
|
| 3364 |
|
| 3365 |
|
| 3366 |
class RetrievalMetric(InstanceMetric):
|
|
@@ -3695,8 +3803,8 @@ def performance_drop_rate(
|
|
| 3695 |
if any(len(scores) == 0 for scores in group_scores_list):
|
| 3696 |
# no comparison can be made since there is not at least one score per type
|
| 3697 |
return np.nan
|
| 3698 |
-
control_mean =
|
| 3699 |
-
comparison_mean =
|
| 3700 |
if control_mean == 0:
|
| 3701 |
# return 0 if comparison is also 0
|
| 3702 |
if comparison_mean == 0:
|
|
@@ -3809,8 +3917,8 @@ def normalized_cohens_h(
|
|
| 3809 |
# no comparison can be made since there is not at least one score per type
|
| 3810 |
h, norm_h = np.nan, np.nan
|
| 3811 |
else:
|
| 3812 |
-
control_mean =
|
| 3813 |
-
comparison_mean =
|
| 3814 |
h = 2 * (np.arcsin(np.sqrt(comparison_mean)) - np.arcsin(np.sqrt(control_mean)))
|
| 3815 |
norm_h = np.clip(a=h / np.pi, a_min=-1, a_max=1)
|
| 3816 |
|
|
@@ -3863,7 +3971,7 @@ def normalized_hedges_g(
|
|
| 3863 |
g, norm_g = np.nan, np.nan
|
| 3864 |
else:
|
| 3865 |
# otherwise, calculate the variances
|
| 3866 |
-
group_mean = [
|
| 3867 |
# sample variance with 1 degree of freedom (denominator n-1); if n=1, return 0 since otherwise throws an error
|
| 3868 |
group_var = [
|
| 3869 |
0.0 if nn == 1 else np.var(scores, ddof=1)
|
|
@@ -3922,7 +4030,7 @@ def mean_subgroup_score(
|
|
| 3922 |
if len(score_list) == 0:
|
| 3923 |
# no scores to use
|
| 3924 |
return np.nan
|
| 3925 |
-
return
|
| 3926 |
|
| 3927 |
|
| 3928 |
# metrics using mean reduction
|
|
|
|
| 1 |
import ast
|
| 2 |
import json
|
| 3 |
+
import os
|
| 4 |
import re
|
| 5 |
import string
|
| 6 |
import uuid
|
| 7 |
import warnings
|
| 8 |
from abc import ABC, abstractmethod
|
| 9 |
from collections import Counter, defaultdict
|
|
|
|
| 10 |
from dataclasses import field
|
| 11 |
from operator import itemgetter
|
|
|
|
| 12 |
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
|
| 13 |
|
| 14 |
import evaluate
|
|
|
|
| 21 |
from .artifact import Artifact, fetch_artifact
|
| 22 |
from .dataclass import (
|
| 23 |
AbstractField,
|
| 24 |
+
DeprecatedField,
|
| 25 |
InternalField,
|
| 26 |
NonPositionalField,
|
| 27 |
OptionalField,
|
| 28 |
)
|
| 29 |
from .deprecation_utils import deprecation
|
| 30 |
+
from .error_utils import Documentation, UnitxtWarning
|
| 31 |
from .inference import HFPipelineBasedInferenceEngine, InferenceEngine
|
| 32 |
from .logging_utils import get_logger
|
| 33 |
from .metric_utils import InstanceInput, MetricRequest, MetricResponse
|
|
|
|
| 43 |
from .settings_utils import get_settings
|
| 44 |
from .stream import MultiStream, Stream
|
| 45 |
from .type_utils import Type, isoftype, parse_type_string, to_type_string
|
| 46 |
+
from .utils import deepcopy
|
| 47 |
|
| 48 |
logger = get_logger()
|
| 49 |
settings = get_settings()
|
|
|
|
| 143 |
else score_name
|
| 144 |
)
|
| 145 |
|
| 146 |
+
def _add_score_prefixes_to_score_dict_and_check_against_existing_scores(
|
| 147 |
+
self, scores: Dict[str, Any], existing_scores: Dict[str, Any]
|
| 148 |
+
) -> Dict[str, Any]:
|
| 149 |
new_scores = {}
|
| 150 |
for score_name, score in scores.items():
|
| 151 |
score_with_prefix = self._add_score_prefix(score_name)
|
| 152 |
new_scores[score_with_prefix] = (
|
| 153 |
score if score_name not in ["score_name"] else self.score_prefix + score
|
| 154 |
)
|
| 155 |
+
for new_score_name in new_scores:
|
| 156 |
+
if new_score_name in ["score", "score_name"]:
|
| 157 |
+
continue
|
| 158 |
+
if new_score_name in existing_scores:
|
| 159 |
+
UnitxtWarning(
|
| 160 |
+
message=f"Metric '{new_score_name}' that has just been evaluated to {new_scores[new_score_name]}, is already recorded "
|
| 161 |
+
f"to have value {existing_scores[new_score_name]} by a previous metric evaluation on this instance or stream. "
|
| 162 |
+
f"To avoid overwriting the existing value, add a score_prefix to the metric (e.g. score_prefix='my_second_').",
|
| 163 |
+
additional_info_id=Documentation.MULTIPLE_METRICS_OUTPUTS,
|
| 164 |
+
)
|
| 165 |
return new_scores
|
| 166 |
|
| 167 |
def _validate_references_and_prediction(self, references, predictions):
|
|
|
|
| 252 |
def disable_confidence_interval_calculation(self):
|
| 253 |
pass
|
| 254 |
|
| 255 |
+
# update instance["score"]["global"] with the global_score just computed for the
|
| 256 |
+
# current metric. global_score contains "score" and "score_name" fields that reflect
|
| 257 |
+
# (the main_score of) the current metric. If CI was computed for global_score, then global_score
|
| 258 |
+
# also contains "score_ci_low" and "score_ci_high" that reflect (the main_score of) the current metric.
|
| 259 |
# A simple python-dictionary-update adds new fields to instance["score"]["global"], and also replaces the values
|
| 260 |
+
# of its fields "score" and "score_name" (and "score_ci_low", "score_ci_high" if applicable),
|
| 261 |
+
# to reflect the current metric, overwriting previous metrics' settings of these fields
|
| 262 |
+
# (if any previous metric exists).
|
| 263 |
# When global_score does NOT contain ci score (because CI was not computed for the current metric), but
|
| 264 |
# one of the previous metrics computed did have, the last of such previous metrics set the values in
|
| 265 |
# fields "score_ci_low" and "score_ci_high" in instance["score"]["global"] to reflect its
|
|
|
|
| 270 |
# therefore, not consistent with "score_name".
|
| 271 |
# In such a case, following the python-dictionary-update, we pop out fields "score_ci_low" and
|
| 272 |
# "score_ci_high" from instance["score"]["global"], so that now all the fields "score.." in
|
| 273 |
+
# instance["score"]["global"] are consistent with the current metric: The metric that is named
|
| 274 |
+
# instance["score"]["global"]["score_name"], its score shows in
|
| 275 |
# field instance["score"]["global"]["score"], and it does not have ci_scores,
|
| 276 |
# which is also reflected in the absence of fields "score_ci_low" and "score_ci_high" from instance["score"]["global"].
|
| 277 |
# If ci IS computed for the current metric, global_score contains "score_ci_low" and "score_ci_high", and these overwrite
|
| 278 |
+
# the ones existing in instance["score"]["global"] by the simple python-dictionary-update, and no need for any further fixeup.
|
| 279 |
def update_and_adjust_global_score(
|
| 280 |
self, instance: Dict[str, Any], global_score: dict
|
| 281 |
):
|
| 282 |
+
for score_name in global_score:
|
| 283 |
+
if score_name in ["score", "score_name", "score_ci_low", "score_ci_high"]:
|
| 284 |
+
continue
|
| 285 |
+
if score_name in instance["score"]["global"]:
|
| 286 |
+
UnitxtWarning(
|
| 287 |
+
message=f"Global metric '{score_name}' that has just been evaluated to {global_score[score_name]}, is already recorded "
|
| 288 |
+
f"to have value {instance['score']['global'][score_name]} by a previous metric evaluation on this stream. "
|
| 289 |
+
f"To avoid overwriting the value, add a score_prefix to the metric (e.g. score_prefix='my_{score_name}'.",
|
| 290 |
+
additional_info_id=Documentation.MULTIPLE_METRICS_OUTPUTS,
|
| 291 |
+
)
|
| 292 |
instance["score"]["global"].update(global_score)
|
| 293 |
for score_ci in ["score_ci_low", "score_ci_high"]:
|
| 294 |
if score_ci in global_score:
|
|
|
|
| 585 |
instance_score[self.main_score] = no_score_value
|
| 586 |
|
| 587 |
instance["score"]["instance"].update(
|
| 588 |
+
self._add_score_prefixes_to_score_dict_and_check_against_existing_scores(
|
| 589 |
+
instance_score, instance["score"]["instance"]
|
| 590 |
+
)
|
| 591 |
)
|
| 592 |
self._validate_references_and_prediction(references, predictions)
|
| 593 |
|
| 594 |
result = self._compute(references, predictions, task_data)
|
| 595 |
+
global_score.update(
|
| 596 |
+
self._add_score_prefixes_to_score_dict_and_check_against_existing_scores(
|
| 597 |
+
result, global_score
|
| 598 |
+
)
|
| 599 |
+
)
|
| 600 |
score_name = global_score["score_name"]
|
| 601 |
confidence_interval = self.compute_global_confidence_intervals(
|
| 602 |
references, predictions, task_data, score_name
|
|
|
|
| 689 |
instance["score"] = {"global": {}, "instance": {}}
|
| 690 |
|
| 691 |
instance["score"]["instance"].update(
|
| 692 |
+
self._add_score_prefixes_to_score_dict_and_check_against_existing_scores(
|
| 693 |
+
score, instance["score"]["instance"]
|
| 694 |
+
)
|
| 695 |
)
|
| 696 |
instances.append(instance)
|
| 697 |
|
|
|
|
| 703 |
if reduction == "mean":
|
| 704 |
for field_name in fields:
|
| 705 |
field_name_with_prefix = self._add_score_prefix(field_name)
|
| 706 |
+
global_score[field_name_with_prefix] = nan_mean(
|
| 707 |
[
|
| 708 |
instance["score"]["instance"][field_name_with_prefix]
|
| 709 |
for instance in instances
|
|
|
|
| 1174 |
instance["score"] = {"global": {}, "instance": {}}
|
| 1175 |
|
| 1176 |
instance["score"]["instance"].update(
|
| 1177 |
+
self._add_score_prefixes_to_score_dict_and_check_against_existing_scores(
|
| 1178 |
+
instance_score, instance["score"]["instance"]
|
| 1179 |
+
)
|
| 1180 |
)
|
| 1181 |
|
| 1182 |
instances.append(instance)
|
|
|
|
| 1362 |
ci_scores = ["string_containment"]
|
| 1363 |
|
| 1364 |
prediction_type = Any # string representation is compared
|
|
|
|
| 1365 |
|
| 1366 |
def compute(
|
| 1367 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
|
|
|
| 1376 |
return result
|
| 1377 |
|
| 1378 |
|
| 1379 |
+
class StringContainmentRatio(InstanceMetric):
|
| 1380 |
+
"""Metric that returns the ratio of values from a specific field contained in the prediction.
|
| 1381 |
+
|
| 1382 |
+
Attributes:
|
| 1383 |
+
field: The field from the task_data that contains the values to be checked for containment.
|
| 1384 |
+
Example task:
|
| 1385 |
+
Task(
|
| 1386 |
+
input_fields={"question": str},
|
| 1387 |
+
reference_fields={"entities": str},
|
| 1388 |
+
prediction_type=str,
|
| 1389 |
+
metrics=["string_containment_ratio[field=entities]"],
|
| 1390 |
+
)
|
| 1391 |
+
"""
|
| 1392 |
+
|
| 1393 |
+
reduction_map = {"mean": ["string_containment"]}
|
| 1394 |
+
main_score = "string_containment"
|
| 1395 |
+
ci_scores = ["string_containment"]
|
| 1396 |
+
field: str = None
|
| 1397 |
+
|
| 1398 |
+
prediction_type = Any # string representation is compared
|
| 1399 |
+
|
| 1400 |
+
def compute(
|
| 1401 |
+
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 1402 |
+
) -> dict:
|
| 1403 |
+
if self.field not in task_data:
|
| 1404 |
+
raise ValueError(
|
| 1405 |
+
f"'{self.field}' field required by {__class__.__name__} is not in passed in task_data: {task_data}"
|
| 1406 |
+
)
|
| 1407 |
+
contain_results = [
|
| 1408 |
+
str(value) in str(prediction) for value in task_data[self.field]
|
| 1409 |
+
]
|
| 1410 |
+
score = sum(contain_results) / len(contain_results)
|
| 1411 |
+
result = {self.main_score: score}
|
| 1412 |
+
result["score"] = result[self.main_score]
|
| 1413 |
+
result["score_name"] = self.main_score
|
| 1414 |
+
return result
|
| 1415 |
+
|
| 1416 |
+
def verify(self):
|
| 1417 |
+
super().verify()
|
| 1418 |
+
if self.field is None:
|
| 1419 |
+
raise ValueError(
|
| 1420 |
+
"StringContainmentRatio metric requires the 'field' attribute to be set."
|
| 1421 |
+
)
|
| 1422 |
+
|
| 1423 |
+
|
| 1424 |
class MetricPipeline(MultiStreamOperator, Metric):
|
| 1425 |
main_score: str = None
|
| 1426 |
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 1427 |
+
postprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 1428 |
+
postpreprocess_steps: Optional[List[StreamingOperator]] = DeprecatedField(
|
| 1429 |
+
metadata={
|
| 1430 |
+
"deprecation_msg": "Field 'postpreprocess_steps' is deprecated. Please use 'postprocess_steps' for the same purpose."
|
| 1431 |
+
}
|
| 1432 |
)
|
| 1433 |
metric: Metric = None
|
| 1434 |
|
|
|
|
| 1449 |
|
| 1450 |
def prepare(self):
|
| 1451 |
super().prepare()
|
| 1452 |
+
has_postpreprocess = (
|
| 1453 |
+
hasattr(self, "postpreprocess_steps")
|
| 1454 |
+
and self.postpreprocess_steps is not None
|
| 1455 |
+
and isinstance(self.postpreprocess_steps, list)
|
| 1456 |
+
and len(self.postpreprocess_steps) > 0
|
| 1457 |
+
)
|
| 1458 |
+
has_postprocess = (
|
| 1459 |
+
hasattr(self, "postprocess_steps")
|
| 1460 |
+
and self.postprocess_steps is not None
|
| 1461 |
+
and isinstance(self.postprocess_steps, list)
|
| 1462 |
+
and len(self.postprocess_steps) > 0
|
| 1463 |
+
)
|
| 1464 |
+
assert not (
|
| 1465 |
+
has_postpreprocess and has_postprocess
|
| 1466 |
+
), "Must define at most one of postpreprocess_steps (which is deprecated) and postprocess_steps (to be used from now on)"
|
| 1467 |
+
if has_postpreprocess:
|
| 1468 |
+
self.postprocess_steps = self.postpreprocess_steps
|
| 1469 |
self.prepare_score = Copy(
|
| 1470 |
field_to_field=[
|
| 1471 |
[
|
|
|
|
| 1483 |
for step in self.preprocess_steps:
|
| 1484 |
multi_stream = step(multi_stream)
|
| 1485 |
multi_stream = self.metric(multi_stream)
|
| 1486 |
+
for step in self.postprocess_steps:
|
| 1487 |
multi_stream = step(multi_stream)
|
| 1488 |
return self.prepare_score(multi_stream)
|
| 1489 |
|
|
|
|
| 1509 |
experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))
|
| 1510 |
|
| 1511 |
def verify(self):
|
| 1512 |
+
if os.path.exists(self.hf_metric_name):
|
| 1513 |
+
UnitxtWarning(
|
| 1514 |
+
f"{self.get_metric_name()} uses a huggingface metric {self.hf_metric_name} which is defined in a local file."
|
| 1515 |
+
f"This may cause issues when running on different machine or different root directories.",
|
| 1516 |
+
Documentation.HUGGINGFACE_METRICS,
|
| 1517 |
+
)
|
| 1518 |
+
|
| 1519 |
assert (
|
| 1520 |
self.hf_additional_input_fields is None
|
| 1521 |
or isoftype(self.hf_additional_input_fields, List[str])
|
|
|
|
| 1761 |
average=self.average,
|
| 1762 |
)
|
| 1763 |
if isinstance(result[self.metric], numpy.ndarray):
|
| 1764 |
+
final_result = {self.main_score: nan_mean(result[self.metric])}
|
| 1765 |
for i, label in enumerate(labels):
|
| 1766 |
final_result[f"{self.metric}_" + self.id_to_str[label]] = result[
|
| 1767 |
self.metric
|
|
|
|
| 2066 |
assert (
|
| 2067 |
len(result[self.metric]) == len(labels)
|
| 2068 |
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
|
| 2069 |
+
final_result = {self.main_score: nan_mean(result[self.metric])}
|
| 2070 |
for i, label in enumerate(labels):
|
| 2071 |
final_result[self.metric + "_" + label] = result[self.metric][i]
|
| 2072 |
else:
|
|
|
|
| 2108 |
average = None
|
| 2109 |
|
| 2110 |
|
| 2111 |
+
class NLTKMixin(Artifact):
|
| 2112 |
+
def prepare(self):
|
| 2113 |
+
super().prepare()
|
| 2114 |
+
import nltk
|
| 2115 |
+
|
| 2116 |
+
nltk.download("punkt", quiet=True)
|
| 2117 |
+
nltk.download("punkt_tab", quiet=True)
|
| 2118 |
+
self.nltk = nltk
|
| 2119 |
+
|
| 2120 |
+
|
| 2121 |
+
class Rouge(InstanceMetric, NLTKMixin):
|
| 2122 |
main_score = "rougeL"
|
| 2123 |
prediction_type = str
|
| 2124 |
single_reference_per_prediction = False # multiple references allowed
|
|
|
|
| 2131 |
|
| 2132 |
def prepare(self):
|
| 2133 |
super().prepare()
|
|
|
|
| 2134 |
from rouge_score import rouge_scorer
|
| 2135 |
|
| 2136 |
self.rouge_scorer = rouge_scorer
|
| 2137 |
|
|
|
|
|
|
|
|
|
|
| 2138 |
def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
|
| 2139 |
# for a single instance, prediction is of type str, and references: list of str
|
| 2140 |
if self.sent_split_newline:
|
| 2141 |
+
prediction = "\n".join(self.nltk.sent_tokenize(prediction.strip()))
|
| 2142 |
|
| 2143 |
references = [
|
| 2144 |
+
"\n".join(self.nltk.sent_tokenize(reference.strip()))
|
| 2145 |
for reference in references
|
| 2146 |
]
|
| 2147 |
|
|
|
|
| 2157 |
return score
|
| 2158 |
|
| 2159 |
|
| 2160 |
+
class RougeHF(HuggingfaceInstanceMetric, NLTKMixin):
|
| 2161 |
hf_metric_name = "rouge"
|
| 2162 |
main_score = "rougeL"
|
| 2163 |
scale = 1.0
|
|
|
|
| 2183 |
{"use_aggregator": False, "rouge_types": self.rouge_types}
|
| 2184 |
)
|
| 2185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2186 |
def compute(self, references, prediction, task_data: List[Dict]):
|
| 2187 |
# for a single instance, prediction is of type str, and references: list of str
|
| 2188 |
if self.sent_split_newline:
|
| 2189 |
+
prediction = "\n".join(self.nltk.sent_tokenize(prediction.strip()))
|
| 2190 |
|
| 2191 |
references = [
|
| 2192 |
+
"\n".join(self.nltk.sent_tokenize(reference.strip()))
|
| 2193 |
for reference in references
|
| 2194 |
]
|
| 2195 |
|
|
|
|
| 3468 |
for pred in q_predictions
|
| 3469 |
]
|
| 3470 |
scores.append(self.eval([q_references], [q_predictions]))
|
| 3471 |
+
return {self.main_score: nan_mean(scores) if len(scores) > 0 else np.nan}
|
| 3472 |
|
| 3473 |
|
| 3474 |
class RetrievalMetric(InstanceMetric):
|
|
|
|
| 3803 |
if any(len(scores) == 0 for scores in group_scores_list):
|
| 3804 |
# no comparison can be made since there is not at least one score per type
|
| 3805 |
return np.nan
|
| 3806 |
+
control_mean = nan_mean(group_scores_list[0])
|
| 3807 |
+
comparison_mean = nan_mean(group_scores_list[1])
|
| 3808 |
if control_mean == 0:
|
| 3809 |
# return 0 if comparison is also 0
|
| 3810 |
if comparison_mean == 0:
|
|
|
|
| 3917 |
# no comparison can be made since there is not at least one score per type
|
| 3918 |
h, norm_h = np.nan, np.nan
|
| 3919 |
else:
|
| 3920 |
+
control_mean = nan_mean(group_scores_list[0])
|
| 3921 |
+
comparison_mean = nan_mean(group_scores_list[1])
|
| 3922 |
h = 2 * (np.arcsin(np.sqrt(comparison_mean)) - np.arcsin(np.sqrt(control_mean)))
|
| 3923 |
norm_h = np.clip(a=h / np.pi, a_min=-1, a_max=1)
|
| 3924 |
|
|
|
|
| 3971 |
g, norm_g = np.nan, np.nan
|
| 3972 |
else:
|
| 3973 |
# otherwise, calculate the variances
|
| 3974 |
+
group_mean = [nan_mean(scores) for scores in group_scores_list]
|
| 3975 |
# sample variance with 1 degree of freedom (denominator n-1); if n=1, return 0 since otherwise throws an error
|
| 3976 |
group_var = [
|
| 3977 |
0.0 if nn == 1 else np.var(scores, ddof=1)
|
|
|
|
| 4030 |
if len(score_list) == 0:
|
| 4031 |
# no scores to use
|
| 4032 |
return np.nan
|
| 4033 |
+
return nan_mean(score_list)
|
| 4034 |
|
| 4035 |
|
| 4036 |
# metrics using mean reduction
|
operators.py
CHANGED
|
@@ -45,7 +45,6 @@ import uuid
|
|
| 45 |
import zipfile
|
| 46 |
from abc import abstractmethod
|
| 47 |
from collections import Counter, defaultdict
|
| 48 |
-
from copy import deepcopy
|
| 49 |
from dataclasses import field
|
| 50 |
from itertools import zip_longest
|
| 51 |
from random import Random
|
|
@@ -86,7 +85,7 @@ from .settings_utils import get_settings
|
|
| 86 |
from .stream import DynamicStream, Stream
|
| 87 |
from .text_utils import nested_tuple_to_string
|
| 88 |
from .type_utils import isoftype
|
| 89 |
-
from .utils import flatten_dict
|
| 90 |
|
| 91 |
settings = get_settings()
|
| 92 |
|
|
|
|
| 45 |
import zipfile
|
| 46 |
from abc import abstractmethod
|
| 47 |
from collections import Counter, defaultdict
|
|
|
|
| 48 |
from dataclasses import field
|
| 49 |
from itertools import zip_longest
|
| 50 |
from random import Random
|
|
|
|
| 85 |
from .stream import DynamicStream, Stream
|
| 86 |
from .text_utils import nested_tuple_to_string
|
| 87 |
from .type_utils import isoftype
|
| 88 |
+
from .utils import deepcopy, flatten_dict
|
| 89 |
|
| 90 |
settings = get_settings()
|
| 91 |
|
schema.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import json
|
| 2 |
-
from
|
| 3 |
-
from typing import Any, Dict, List, Optional
|
| 4 |
|
| 5 |
from datasets import Features, Sequence, Value
|
| 6 |
|
|
|
|
| 7 |
from .operator import InstanceOperatorValidator
|
| 8 |
|
| 9 |
UNITXT_DATASET_SCHEMA = Features(
|
|
@@ -20,10 +20,7 @@ UNITXT_DATASET_SCHEMA = Features(
|
|
| 20 |
)
|
| 21 |
|
| 22 |
|
| 23 |
-
class
|
| 24 |
-
group: str
|
| 25 |
-
metrics: List[str] = None
|
| 26 |
-
postprocessors: List[str] = field(default_factory=lambda: ["to_string_stripped"])
|
| 27 |
remove_unnecessary_fields: bool = True
|
| 28 |
|
| 29 |
@staticmethod
|
|
@@ -43,6 +40,7 @@ class ToUnitxtGroup(InstanceOperatorValidator):
|
|
| 43 |
"template": self.artifact_to_jsonable(
|
| 44 |
instance["recipe_metadata"]["template"]
|
| 45 |
),
|
|
|
|
| 46 |
},
|
| 47 |
}
|
| 48 |
instance["task_data"] = json.dumps(task_data)
|
|
@@ -56,11 +54,16 @@ class ToUnitxtGroup(InstanceOperatorValidator):
|
|
| 56 |
|
| 57 |
for key in keys_to_delete:
|
| 58 |
del instance[key]
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
instance["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
return instance
|
| 65 |
|
| 66 |
def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
|
|
|
|
| 1 |
import json
|
| 2 |
+
from typing import Any, Dict, Optional
|
|
|
|
| 3 |
|
| 4 |
from datasets import Features, Sequence, Value
|
| 5 |
|
| 6 |
+
from .artifact import Artifact
|
| 7 |
from .operator import InstanceOperatorValidator
|
| 8 |
|
| 9 |
UNITXT_DATASET_SCHEMA = Features(
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
|
| 23 |
+
class Finalize(InstanceOperatorValidator):
|
|
|
|
|
|
|
|
|
|
| 24 |
remove_unnecessary_fields: bool = True
|
| 25 |
|
| 26 |
@staticmethod
|
|
|
|
| 40 |
"template": self.artifact_to_jsonable(
|
| 41 |
instance["recipe_metadata"]["template"]
|
| 42 |
),
|
| 43 |
+
"num_demos": instance["recipe_metadata"]["num_demos"],
|
| 44 |
},
|
| 45 |
}
|
| 46 |
instance["task_data"] = json.dumps(task_data)
|
|
|
|
| 54 |
|
| 55 |
for key in keys_to_delete:
|
| 56 |
del instance[key]
|
| 57 |
+
if "group" not in instance:
|
| 58 |
+
instance["group"] = "unitxt"
|
| 59 |
+
instance["metrics"] = [
|
| 60 |
+
metric.to_json() if isinstance(metric, Artifact) else metric
|
| 61 |
+
for metric in instance["metrics"]
|
| 62 |
+
]
|
| 63 |
+
instance["postprocessors"] = [
|
| 64 |
+
processor.to_json() if isinstance(processor, Artifact) else processor
|
| 65 |
+
for processor in instance["postprocessors"]
|
| 66 |
+
]
|
| 67 |
return instance
|
| 68 |
|
| 69 |
def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
|
splitters.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import itertools
|
| 2 |
from abc import abstractmethod
|
| 3 |
-
from copy import deepcopy
|
| 4 |
from difflib import get_close_matches
|
| 5 |
from typing import Dict, List, Optional
|
| 6 |
|
|
@@ -17,6 +16,7 @@ from .split_utils import (
|
|
| 17 |
)
|
| 18 |
from .stream import EmptyStreamError, FaultyStreamError, MultiStream
|
| 19 |
from .type_utils import isoftype
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
class Splitter(MultiStreamOperator):
|
|
@@ -109,36 +109,25 @@ class SliceSplit(Splitter):
|
|
| 109 |
return MultiStream.from_generators(generators)
|
| 110 |
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def prepare(self):
|
| 116 |
-
super().prepare()
|
| 117 |
-
self.set_size(self.sample_size)
|
| 118 |
|
| 119 |
-
def set_size(self, size):
|
| 120 |
-
if isinstance(size, str):
|
| 121 |
-
assert (
|
| 122 |
-
size.isdigit()
|
| 123 |
-
), f"sample_size must be a natural number, got {self.sample_size}"
|
| 124 |
-
size = int(size)
|
| 125 |
-
self.sample_size = size
|
| 126 |
|
|
|
|
| 127 |
@abstractmethod
|
| 128 |
def sample(
|
| 129 |
-
self,
|
|
|
|
|
|
|
|
|
|
| 130 |
) -> List[Dict[str, object]]:
|
| 131 |
pass
|
| 132 |
|
| 133 |
-
def get_random_generator_based_on_instance(self, instance):
|
| 134 |
-
return new_random_generator(sub_seed={**instance["input_fields"]})
|
| 135 |
-
|
| 136 |
def filter_source_by_instance(
|
| 137 |
self, instances_pool: List[Dict[str, object]], instance: Dict[str, object]
|
| 138 |
) -> List[Dict[str, object]]:
|
| 139 |
if "input_fields" not in instance:
|
| 140 |
raise ValueError(f"'input_fields' field is missing from '{instance}'.")
|
| 141 |
-
# l = list(filter(lambda x: x["inputs"] != instance["inputs"], instances_pool))
|
| 142 |
try:
|
| 143 |
return [
|
| 144 |
item
|
|
@@ -154,12 +143,13 @@ class RandomSampler(Sampler):
|
|
| 154 |
|
| 155 |
def sample(
|
| 156 |
self,
|
|
|
|
| 157 |
instances_pool: List[Dict[str, object]],
|
| 158 |
instance: Optional[Dict[str, object]],
|
| 159 |
) -> List[Dict[str, object]]:
|
| 160 |
instances_pool = list(instances_pool)
|
| 161 |
-
random_generator =
|
| 162 |
-
return random_generator.sample(instances_pool,
|
| 163 |
|
| 164 |
|
| 165 |
class FixedIndicesSampler(Sampler):
|
|
@@ -175,13 +165,14 @@ class FixedIndicesSampler(Sampler):
|
|
| 175 |
|
| 176 |
def sample(
|
| 177 |
self,
|
|
|
|
| 178 |
instances_pool: List[Dict[str, object]],
|
| 179 |
instance: Optional[Dict[str, object]],
|
| 180 |
) -> List[Dict[str, object]]:
|
| 181 |
num_instances = len(instances_pool)
|
| 182 |
|
| 183 |
instances = []
|
| 184 |
-
for index in self.indices[0
|
| 185 |
if index >= num_instances:
|
| 186 |
raise ValueError(
|
| 187 |
f"FixedIndicesSampler 'indices' field contains index ({index}) which is out of bounds of the instance pool ( of size {num_instances})"
|
|
@@ -200,7 +191,10 @@ class CloseTextSampler(Sampler):
|
|
| 200 |
field: str
|
| 201 |
|
| 202 |
def sample(
|
| 203 |
-
self,
|
|
|
|
|
|
|
|
|
|
| 204 |
) -> List[Dict[str, object]]:
|
| 205 |
field = f"input_fields/{self.field}"
|
| 206 |
value = dict_get(instance, field)
|
|
@@ -211,9 +205,7 @@ class CloseTextSampler(Sampler):
|
|
| 211 |
options = []
|
| 212 |
for instance_in_pool in instances_pool:
|
| 213 |
options.append(dict_get(instance_in_pool, field))
|
| 214 |
-
closest_matches = get_close_matches(
|
| 215 |
-
value, options, n=self.sample_size, cutoff=0
|
| 216 |
-
)
|
| 217 |
# Randmly select 'sample_size' instances that are from the closest matches text
|
| 218 |
# (There may be multiple instance with same text in the given field, and the order returned is
|
| 219 |
# is also randomized )
|
|
@@ -222,8 +214,8 @@ class CloseTextSampler(Sampler):
|
|
| 222 |
for instance_in_pool in instances_pool
|
| 223 |
if dict_get(instance_in_pool, field) in closest_matches
|
| 224 |
]
|
| 225 |
-
random_generator =
|
| 226 |
-
return random_generator.sample(instances_pool,
|
| 227 |
|
| 228 |
|
| 229 |
class DiverseLabelsSampler(Sampler):
|
|
@@ -306,26 +298,27 @@ class DiverseLabelsSampler(Sampler):
|
|
| 306 |
|
| 307 |
def sample(
|
| 308 |
self,
|
|
|
|
| 309 |
instances_pool: List[Dict[str, object]],
|
| 310 |
instance: Optional[Dict[str, object]],
|
| 311 |
) -> List[Dict[str, object]]:
|
| 312 |
if self.labels_cache is None:
|
| 313 |
self.labels_cache = self.divide_by_repr(instances_pool)
|
| 314 |
all_labels = list(self.labels_cache.keys())
|
| 315 |
-
random_generator =
|
| 316 |
random_generator.shuffle(all_labels)
|
| 317 |
from collections import Counter
|
| 318 |
|
| 319 |
-
if
|
| 320 |
raise ValueError(
|
| 321 |
-
f"Request sample size {
|
| 322 |
)
|
| 323 |
total_allocated = 0
|
| 324 |
allocations = Counter()
|
| 325 |
|
| 326 |
-
while total_allocated <
|
| 327 |
for label in all_labels:
|
| 328 |
-
if total_allocated <
|
| 329 |
if len(self.labels_cache[label]) - allocations[label] > 0:
|
| 330 |
allocations[label] += 1
|
| 331 |
total_allocated += 1
|
|
@@ -341,40 +334,56 @@ class DiverseLabelsSampler(Sampler):
|
|
| 341 |
return result
|
| 342 |
|
| 343 |
|
| 344 |
-
class
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
sampler: Sampler
|
| 348 |
|
| 349 |
def prepare(self):
|
| 350 |
self.local_cache = None
|
| 351 |
self.sampler.prepare()
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
assert self.sampler is not None, "Sampler must be specified"
|
| 357 |
-
return super().verify()
|
| 358 |
|
| 359 |
def process(
|
| 360 |
self, instance: Dict[str, object], multi_stream: MultiStream
|
| 361 |
) -> Dict[str, object]:
|
|
|
|
| 362 |
try:
|
| 363 |
if self.local_cache is None:
|
| 364 |
-
self.local_cache = deepcopy(list(multi_stream[self.
|
| 365 |
|
| 366 |
source_stream = self.local_cache
|
| 367 |
source_stream = self.sampler.filter_source_by_instance(
|
| 368 |
source_stream, instance
|
| 369 |
)
|
| 370 |
-
if len(source_stream) <
|
| 371 |
raise ValueError(
|
| 372 |
f"Size of population to sample from: {len(source_stream)} is smaller than the needed sample_size: {self.sampler.sample_size}."
|
| 373 |
)
|
| 374 |
-
sampled_instances = self.sampler.sample(
|
| 375 |
-
|
|
|
|
|
|
|
| 376 |
return instance
|
| 377 |
except FaultyStreamError as e:
|
| 378 |
raise EmptyStreamError(
|
| 379 |
-
f"Unable to fetch instances from '{self.
|
| 380 |
) from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import itertools
|
| 2 |
from abc import abstractmethod
|
|
|
|
| 3 |
from difflib import get_close_matches
|
| 4 |
from typing import Dict, List, Optional
|
| 5 |
|
|
|
|
| 16 |
)
|
| 17 |
from .stream import EmptyStreamError, FaultyStreamError, MultiStream
|
| 18 |
from .type_utils import isoftype
|
| 19 |
+
from .utils import deepcopy
|
| 20 |
|
| 21 |
|
| 22 |
class Splitter(MultiStreamOperator):
|
|
|
|
| 109 |
return MultiStream.from_generators(generators)
|
| 110 |
|
| 111 |
|
| 112 |
+
def get_random_generator_based_on_instance(instance):
|
| 113 |
+
return new_random_generator(sub_seed={**instance["input_fields"]})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
class Sampler(Artifact):
|
| 117 |
@abstractmethod
|
| 118 |
def sample(
|
| 119 |
+
self,
|
| 120 |
+
sample_size: int,
|
| 121 |
+
instances_pool: List[Dict[str, object]],
|
| 122 |
+
instance: Dict[str, object],
|
| 123 |
) -> List[Dict[str, object]]:
|
| 124 |
pass
|
| 125 |
|
|
|
|
|
|
|
|
|
|
| 126 |
def filter_source_by_instance(
|
| 127 |
self, instances_pool: List[Dict[str, object]], instance: Dict[str, object]
|
| 128 |
) -> List[Dict[str, object]]:
|
| 129 |
if "input_fields" not in instance:
|
| 130 |
raise ValueError(f"'input_fields' field is missing from '{instance}'.")
|
|
|
|
| 131 |
try:
|
| 132 |
return [
|
| 133 |
item
|
|
|
|
| 143 |
|
| 144 |
def sample(
|
| 145 |
self,
|
| 146 |
+
sample_size,
|
| 147 |
instances_pool: List[Dict[str, object]],
|
| 148 |
instance: Optional[Dict[str, object]],
|
| 149 |
) -> List[Dict[str, object]]:
|
| 150 |
instances_pool = list(instances_pool)
|
| 151 |
+
random_generator = get_random_generator_based_on_instance(instance)
|
| 152 |
+
return random_generator.sample(instances_pool, sample_size)
|
| 153 |
|
| 154 |
|
| 155 |
class FixedIndicesSampler(Sampler):
|
|
|
|
| 165 |
|
| 166 |
def sample(
|
| 167 |
self,
|
| 168 |
+
sample_size,
|
| 169 |
instances_pool: List[Dict[str, object]],
|
| 170 |
instance: Optional[Dict[str, object]],
|
| 171 |
) -> List[Dict[str, object]]:
|
| 172 |
num_instances = len(instances_pool)
|
| 173 |
|
| 174 |
instances = []
|
| 175 |
+
for index in self.indices[0:sample_size]:
|
| 176 |
if index >= num_instances:
|
| 177 |
raise ValueError(
|
| 178 |
f"FixedIndicesSampler 'indices' field contains index ({index}) which is out of bounds of the instance pool ( of size {num_instances})"
|
|
|
|
| 191 |
field: str
|
| 192 |
|
| 193 |
def sample(
|
| 194 |
+
self,
|
| 195 |
+
sample_size: int,
|
| 196 |
+
instances_pool: List[Dict[str, object]],
|
| 197 |
+
instance: Dict[str, object],
|
| 198 |
) -> List[Dict[str, object]]:
|
| 199 |
field = f"input_fields/{self.field}"
|
| 200 |
value = dict_get(instance, field)
|
|
|
|
| 205 |
options = []
|
| 206 |
for instance_in_pool in instances_pool:
|
| 207 |
options.append(dict_get(instance_in_pool, field))
|
| 208 |
+
closest_matches = get_close_matches(value, options, n=sample_size, cutoff=0)
|
|
|
|
|
|
|
| 209 |
# Randmly select 'sample_size' instances that are from the closest matches text
|
| 210 |
# (There may be multiple instance with same text in the given field, and the order returned is
|
| 211 |
# is also randomized )
|
|
|
|
| 214 |
for instance_in_pool in instances_pool
|
| 215 |
if dict_get(instance_in_pool, field) in closest_matches
|
| 216 |
]
|
| 217 |
+
random_generator = get_random_generator_based_on_instance(instance)
|
| 218 |
+
return random_generator.sample(instances_pool, sample_size)
|
| 219 |
|
| 220 |
|
| 221 |
class DiverseLabelsSampler(Sampler):
|
|
|
|
| 298 |
|
| 299 |
def sample(
|
| 300 |
self,
|
| 301 |
+
sample_size: int,
|
| 302 |
instances_pool: List[Dict[str, object]],
|
| 303 |
instance: Optional[Dict[str, object]],
|
| 304 |
) -> List[Dict[str, object]]:
|
| 305 |
if self.labels_cache is None:
|
| 306 |
self.labels_cache = self.divide_by_repr(instances_pool)
|
| 307 |
all_labels = list(self.labels_cache.keys())
|
| 308 |
+
random_generator = get_random_generator_based_on_instance(instance)
|
| 309 |
random_generator.shuffle(all_labels)
|
| 310 |
from collections import Counter
|
| 311 |
|
| 312 |
+
if sample_size > len(instances_pool):
|
| 313 |
raise ValueError(
|
| 314 |
+
f"Request sample size {sample_size} is greater than number of instances {len(instances_pool)}"
|
| 315 |
)
|
| 316 |
total_allocated = 0
|
| 317 |
allocations = Counter()
|
| 318 |
|
| 319 |
+
while total_allocated < sample_size:
|
| 320 |
for label in all_labels:
|
| 321 |
+
if total_allocated < sample_size:
|
| 322 |
if len(self.labels_cache[label]) - allocations[label] > 0:
|
| 323 |
allocations[label] += 1
|
| 324 |
total_allocated += 1
|
|
|
|
| 334 |
return result
|
| 335 |
|
| 336 |
|
| 337 |
+
class Sample(InstanceOperatorWithMultiStreamAccess):
|
| 338 |
+
from_stream: str
|
| 339 |
+
to_field: str
|
| 340 |
+
sampler: Sampler
|
| 341 |
|
| 342 |
def prepare(self):
|
| 343 |
self.local_cache = None
|
| 344 |
self.sampler.prepare()
|
| 345 |
|
| 346 |
+
@abstractmethod
|
| 347 |
+
def get_sample_size(self, instance) -> int:
|
| 348 |
+
pass
|
|
|
|
|
|
|
| 349 |
|
| 350 |
def process(
|
| 351 |
self, instance: Dict[str, object], multi_stream: MultiStream
|
| 352 |
) -> Dict[str, object]:
|
| 353 |
+
sample_size = self.get_sample_size(instance)
|
| 354 |
try:
|
| 355 |
if self.local_cache is None:
|
| 356 |
+
self.local_cache = deepcopy(list(multi_stream[self.from_stream]))
|
| 357 |
|
| 358 |
source_stream = self.local_cache
|
| 359 |
source_stream = self.sampler.filter_source_by_instance(
|
| 360 |
source_stream, instance
|
| 361 |
)
|
| 362 |
+
if len(source_stream) < sample_size:
|
| 363 |
raise ValueError(
|
| 364 |
f"Size of population to sample from: {len(source_stream)} is smaller than the needed sample_size: {self.sampler.sample_size}."
|
| 365 |
)
|
| 366 |
+
sampled_instances = self.sampler.sample(
|
| 367 |
+
sample_size=sample_size, instances_pool=source_stream, instance=instance
|
| 368 |
+
)
|
| 369 |
+
instance[self.to_field] = sampled_instances
|
| 370 |
return instance
|
| 371 |
except FaultyStreamError as e:
|
| 372 |
raise EmptyStreamError(
|
| 373 |
+
f"Unable to fetch instances from '{self.from_stream}' to '{self.to_field}', due to {e.__class__.__name__}: {e}"
|
| 374 |
) from e
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class ConstantSizeSample(Sample):
|
| 378 |
+
sample_size: int
|
| 379 |
+
|
| 380 |
+
def get_sample_size(self, instance) -> int:
|
| 381 |
+
return self.sample_size
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class RandomSizeSample(Sample):
|
| 385 |
+
sample_sizes: List[int]
|
| 386 |
+
|
| 387 |
+
def get_sample_size(self, instance) -> int:
|
| 388 |
+
random_generator = get_random_generator_based_on_instance(instance)
|
| 389 |
+
return random_generator.choice(self.sample_sizes)
|
standard.py
CHANGED
|
@@ -1,17 +1,18 @@
|
|
| 1 |
-
from typing import List
|
| 2 |
|
| 3 |
from .card import TaskCard
|
|
|
|
| 4 |
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
|
| 5 |
from .formats import Format, SystemFormat
|
| 6 |
from .logging_utils import get_logger
|
| 7 |
from .operator import SequentialOperator, SourceSequentialOperator, StreamingOperator
|
| 8 |
from .operators import Augmentor, NullAugmentor, Set, StreamRefiner
|
| 9 |
from .recipe import Recipe
|
| 10 |
-
from .schema import
|
| 11 |
-
from .splitters import Sampler, SeparateSplit
|
| 12 |
from .stream import MultiStream
|
| 13 |
from .system_prompts import EmptySystemPrompt, SystemPrompt
|
| 14 |
-
from .templates import Template
|
| 15 |
|
| 16 |
logger = get_logger()
|
| 17 |
|
|
@@ -21,15 +22,15 @@ class CreateDemosPool(SeparateSplit):
|
|
| 21 |
pass
|
| 22 |
|
| 23 |
|
| 24 |
-
class AddDemosField(SpreadSplit):
|
| 25 |
-
pass
|
| 26 |
-
|
| 27 |
-
|
| 28 |
class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
|
|
| 29 |
card: TaskCard
|
| 30 |
-
template: Template = None
|
| 31 |
system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt)
|
| 32 |
format: Format = Field(default_factory=SystemFormat)
|
|
|
|
|
|
|
|
|
|
| 33 |
metrics: List[str] = NonPositionalField(default=None)
|
| 34 |
postprocessors: List[str] = NonPositionalField(default=None)
|
| 35 |
|
|
@@ -44,7 +45,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 44 |
test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
|
| 45 |
|
| 46 |
demos_pool_size: int = None
|
| 47 |
-
num_demos: int = 0
|
| 48 |
demos_removed_from_data: bool = True
|
| 49 |
|
| 50 |
demos_pool_name: str = "demos_pool"
|
|
@@ -59,16 +60,22 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 59 |
def before_process_multi_stream(self):
|
| 60 |
super().before_process_multi_stream()
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def verify(self):
|
| 63 |
super().verify()
|
| 64 |
-
if self.
|
| 65 |
if self.demos_pool_size is None or self.demos_pool_size < 1:
|
| 66 |
raise ValueError(
|
| 67 |
"When using demonstrations both num_demos and demos_pool_size should be assigned with positive integers."
|
| 68 |
)
|
| 69 |
-
if self.demos_pool_size < self.
|
| 70 |
raise ValueError(
|
| 71 |
-
f"num_demos (got: {self.
|
| 72 |
)
|
| 73 |
if self.loader_limit and self.demos_pool_size > self.loader_limit:
|
| 74 |
raise ValueError(
|
|
@@ -105,6 +112,17 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 105 |
f"post processors must be a list of post processor. Got postprocessors = {self.postprocessors}"
|
| 106 |
)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
def prepare_refiners(self):
|
| 109 |
self.train_refiner.max_instances = self.max_train_instances
|
| 110 |
self.train_refiner.apply_to_streams = ["train"]
|
|
@@ -118,31 +136,12 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 118 |
self.test_refiner.apply_to_streams = ["test"]
|
| 119 |
self.processing.steps.append(self.test_refiner)
|
| 120 |
|
| 121 |
-
def
|
| 122 |
-
|
| 123 |
-
# a Template object
|
| 124 |
-
if self.template is not None and not isinstance(self.template, Template):
|
| 125 |
raise ValueError(
|
| 126 |
-
f"template argument must be an object of type Template.
|
| 127 |
)
|
| 128 |
|
| 129 |
-
if self.postprocessors is None:
|
| 130 |
-
postprocessors = self.template.get_postprocessors()
|
| 131 |
-
else:
|
| 132 |
-
postprocessors = self.postprocessors
|
| 133 |
-
|
| 134 |
-
if self.metrics is None:
|
| 135 |
-
metrics = self.card.task.metrics
|
| 136 |
-
else:
|
| 137 |
-
metrics = self.metrics
|
| 138 |
-
|
| 139 |
-
metrics = [
|
| 140 |
-
metric if isinstance(metric, str) else metric.to_json()
|
| 141 |
-
for metric in metrics
|
| 142 |
-
]
|
| 143 |
-
|
| 144 |
-
return metrics, postprocessors
|
| 145 |
-
|
| 146 |
def set_pipelines(self):
|
| 147 |
self.loading = SequentialOperator()
|
| 148 |
self.loading.__description__ = "Loading the data from the data source."
|
|
@@ -158,8 +157,8 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 158 |
self.processing.__description__ = (
|
| 159 |
"Setting task fields (and selecting demos per sample if needed)."
|
| 160 |
)
|
| 161 |
-
self.
|
| 162 |
-
self.
|
| 163 |
self.finalize = SequentialOperator()
|
| 164 |
self.finalize.__description__ = "Adding post processors. Removing intermediate fields. Creating the final output dataset."
|
| 165 |
|
|
@@ -169,7 +168,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 169 |
self.standardization,
|
| 170 |
self.processing,
|
| 171 |
self.metadata,
|
| 172 |
-
self.
|
| 173 |
self.finalize,
|
| 174 |
]
|
| 175 |
|
|
@@ -193,7 +192,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 193 |
|
| 194 |
self.inference = SequentialOperator()
|
| 195 |
|
| 196 |
-
self.inference.steps = [self.
|
| 197 |
|
| 198 |
self._demos_pool_cache = None
|
| 199 |
|
|
@@ -202,7 +201,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 202 |
return list(self.inference_instance(ms)["__inference__"])
|
| 203 |
|
| 204 |
def production_demos_pool(self):
|
| 205 |
-
if self.
|
| 206 |
if self._demos_pool_cache is None:
|
| 207 |
self._demos_pool_cache = list(
|
| 208 |
self.inference_demos()[self.demos_pool_name]
|
|
@@ -210,6 +209,14 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 210 |
return self._demos_pool_cache
|
| 211 |
return []
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
def produce(self, task_instances):
|
| 214 |
"""Use the recipe in production to produce model ready query from standard task instance."""
|
| 215 |
self.before_process_multi_stream()
|
|
@@ -243,11 +250,8 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 243 |
self.metadata.steps.append(
|
| 244 |
Set(
|
| 245 |
fields={
|
| 246 |
-
"recipe_metadata":
|
| 247 |
-
|
| 248 |
-
"system_prompt": self.system_prompt,
|
| 249 |
-
"format": self.format,
|
| 250 |
-
}
|
| 251 |
}
|
| 252 |
)
|
| 253 |
)
|
|
@@ -260,7 +264,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 260 |
self.augmentor.set_task_input_fields(self.card.task.augmentable_inputs)
|
| 261 |
self.processing.steps.append(self.augmentor)
|
| 262 |
|
| 263 |
-
if self.
|
| 264 |
self.processing.steps.append(
|
| 265 |
CreateDemosPool(
|
| 266 |
from_split=self.demos_taken_from,
|
|
@@ -270,7 +274,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 270 |
)
|
| 271 |
)
|
| 272 |
|
| 273 |
-
if self.
|
| 274 |
if self.sampler is None:
|
| 275 |
if self.card.sampler is None:
|
| 276 |
raise ValueError(
|
|
@@ -279,33 +283,76 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 279 |
)
|
| 280 |
self.sampler = self.card.sampler
|
| 281 |
|
| 282 |
-
self.sampler.set_size(self.num_demos)
|
| 283 |
-
|
| 284 |
self.prepare_refiners()
|
| 285 |
|
| 286 |
-
self.
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
)
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
-
self.
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
metrics=metrics,
|
| 306 |
-
postprocessors=postprocessors,
|
| 307 |
)
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
|
| 311 |
class StandardRecipeWithIndexes(BaseRecipe):
|
|
|
|
| 1 |
+
from typing import List, Optional, Union
|
| 2 |
|
| 3 |
from .card import TaskCard
|
| 4 |
+
from .collections_operators import GetLength
|
| 5 |
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
|
| 6 |
from .formats import Format, SystemFormat
|
| 7 |
from .logging_utils import get_logger
|
| 8 |
from .operator import SequentialOperator, SourceSequentialOperator, StreamingOperator
|
| 9 |
from .operators import Augmentor, NullAugmentor, Set, StreamRefiner
|
| 10 |
from .recipe import Recipe
|
| 11 |
+
from .schema import Finalize
|
| 12 |
+
from .splitters import ConstantSizeSample, RandomSizeSample, Sampler, SeparateSplit
|
| 13 |
from .stream import MultiStream
|
| 14 |
from .system_prompts import EmptySystemPrompt, SystemPrompt
|
| 15 |
+
from .templates import ApplyRandomTemplate, ApplySingleTemplate, Template
|
| 16 |
|
| 17 |
logger = get_logger()
|
| 18 |
|
|
|
|
| 22 |
pass
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
class BaseRecipe(Recipe, SourceSequentialOperator):
|
| 26 |
+
# Base parameters
|
| 27 |
card: TaskCard
|
| 28 |
+
template: Union[Template, List[Template]] = None
|
| 29 |
system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt)
|
| 30 |
format: Format = Field(default_factory=SystemFormat)
|
| 31 |
+
|
| 32 |
+
# Additional parameters
|
| 33 |
+
template_card_index: int = NonPositionalField(default=None)
|
| 34 |
metrics: List[str] = NonPositionalField(default=None)
|
| 35 |
postprocessors: List[str] = NonPositionalField(default=None)
|
| 36 |
|
|
|
|
| 45 |
test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
|
| 46 |
|
| 47 |
demos_pool_size: int = None
|
| 48 |
+
num_demos: Optional[Union[int, List[int]]] = 0
|
| 49 |
demos_removed_from_data: bool = True
|
| 50 |
|
| 51 |
demos_pool_name: str = "demos_pool"
|
|
|
|
| 60 |
def before_process_multi_stream(self):
|
| 61 |
super().before_process_multi_stream()
|
| 62 |
|
| 63 |
+
@property
|
| 64 |
+
def max_demos_size(self):
|
| 65 |
+
if isinstance(self.num_demos, list):
|
| 66 |
+
return max(self.num_demos)
|
| 67 |
+
return self.num_demos
|
| 68 |
+
|
| 69 |
def verify(self):
|
| 70 |
super().verify()
|
| 71 |
+
if self.use_demos:
|
| 72 |
if self.demos_pool_size is None or self.demos_pool_size < 1:
|
| 73 |
raise ValueError(
|
| 74 |
"When using demonstrations both num_demos and demos_pool_size should be assigned with positive integers."
|
| 75 |
)
|
| 76 |
+
if self.demos_pool_size < self.max_demos_size:
|
| 77 |
raise ValueError(
|
| 78 |
+
f"num_demos (got: {self.max_demos_size}) should not exceed demos_pool_size (got: {self.demos_pool_size})"
|
| 79 |
)
|
| 80 |
if self.loader_limit and self.demos_pool_size > self.loader_limit:
|
| 81 |
raise ValueError(
|
|
|
|
| 112 |
f"post processors must be a list of post processor. Got postprocessors = {self.postprocessors}"
|
| 113 |
)
|
| 114 |
|
| 115 |
+
if self.template is None:
|
| 116 |
+
raise ValueError(
|
| 117 |
+
"You must set in the recipe either `template`, `template_card_index` or `templates`."
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
if isinstance(self.template, list):
|
| 121 |
+
for template in self.template:
|
| 122 |
+
self.verify_template(template)
|
| 123 |
+
else:
|
| 124 |
+
self.verify_template(self.template)
|
| 125 |
+
|
| 126 |
def prepare_refiners(self):
|
| 127 |
self.train_refiner.max_instances = self.max_train_instances
|
| 128 |
self.train_refiner.apply_to_streams = ["train"]
|
|
|
|
| 136 |
self.test_refiner.apply_to_streams = ["test"]
|
| 137 |
self.processing.steps.append(self.test_refiner)
|
| 138 |
|
| 139 |
+
def verify_template(self, template):
|
| 140 |
+
if not isinstance(template, Template):
|
|
|
|
|
|
|
| 141 |
raise ValueError(
|
| 142 |
+
f"template argument must be an object of type Template. Got template = {template}"
|
| 143 |
)
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
def set_pipelines(self):
|
| 146 |
self.loading = SequentialOperator()
|
| 147 |
self.loading.__description__ = "Loading the data from the data source."
|
|
|
|
| 157 |
self.processing.__description__ = (
|
| 158 |
"Setting task fields (and selecting demos per sample if needed)."
|
| 159 |
)
|
| 160 |
+
self.verbalization = SequentialOperator()
|
| 161 |
+
self.verbalization.__description__ = "Verbalizing the input to the model and gold references to the 'source', 'target' and 'references' fields."
|
| 162 |
self.finalize = SequentialOperator()
|
| 163 |
self.finalize.__description__ = "Adding post processors. Removing intermediate fields. Creating the final output dataset."
|
| 164 |
|
|
|
|
| 168 |
self.standardization,
|
| 169 |
self.processing,
|
| 170 |
self.metadata,
|
| 171 |
+
self.verbalization,
|
| 172 |
self.finalize,
|
| 173 |
]
|
| 174 |
|
|
|
|
| 192 |
|
| 193 |
self.inference = SequentialOperator()
|
| 194 |
|
| 195 |
+
self.inference.steps = [self.verbalization, self.finalize]
|
| 196 |
|
| 197 |
self._demos_pool_cache = None
|
| 198 |
|
|
|
|
| 201 |
return list(self.inference_instance(ms)["__inference__"])
|
| 202 |
|
| 203 |
def production_demos_pool(self):
|
| 204 |
+
if self.use_demos:
|
| 205 |
if self._demos_pool_cache is None:
|
| 206 |
self._demos_pool_cache = list(
|
| 207 |
self.inference_demos()[self.demos_pool_name]
|
|
|
|
| 209 |
return self._demos_pool_cache
|
| 210 |
return []
|
| 211 |
|
| 212 |
+
@property
|
| 213 |
+
def has_custom_demos_pool(self):
|
| 214 |
+
return self.demos_pool_size is not None and self.demos_pool_size > 0
|
| 215 |
+
|
| 216 |
+
@property
|
| 217 |
+
def use_demos(self):
|
| 218 |
+
return self.num_demos is not None and self.max_demos_size > 0
|
| 219 |
+
|
| 220 |
def produce(self, task_instances):
|
| 221 |
"""Use the recipe in production to produce model ready query from standard task instance."""
|
| 222 |
self.before_process_multi_stream()
|
|
|
|
| 250 |
self.metadata.steps.append(
|
| 251 |
Set(
|
| 252 |
fields={
|
| 253 |
+
"recipe_metadata/system_prompt": self.system_prompt,
|
| 254 |
+
"recipe_metadata/format": self.format,
|
|
|
|
|
|
|
|
|
|
| 255 |
}
|
| 256 |
)
|
| 257 |
)
|
|
|
|
| 264 |
self.augmentor.set_task_input_fields(self.card.task.augmentable_inputs)
|
| 265 |
self.processing.steps.append(self.augmentor)
|
| 266 |
|
| 267 |
+
if self.has_custom_demos_pool:
|
| 268 |
self.processing.steps.append(
|
| 269 |
CreateDemosPool(
|
| 270 |
from_split=self.demos_taken_from,
|
|
|
|
| 274 |
)
|
| 275 |
)
|
| 276 |
|
| 277 |
+
if self.use_demos:
|
| 278 |
if self.sampler is None:
|
| 279 |
if self.card.sampler is None:
|
| 280 |
raise ValueError(
|
|
|
|
| 283 |
)
|
| 284 |
self.sampler = self.card.sampler
|
| 285 |
|
|
|
|
|
|
|
| 286 |
self.prepare_refiners()
|
| 287 |
|
| 288 |
+
if self.use_demos:
|
| 289 |
+
if isinstance(self.num_demos, int):
|
| 290 |
+
self.verbalization.steps.append(
|
| 291 |
+
ConstantSizeSample(
|
| 292 |
+
from_stream=self.demos_pool_name,
|
| 293 |
+
to_field=self.demos_field,
|
| 294 |
+
sampler=self.sampler,
|
| 295 |
+
sample_size=self.num_demos,
|
| 296 |
+
)
|
| 297 |
+
)
|
| 298 |
+
self.verbalization.steps.append(
|
| 299 |
+
Set(fields={"recipe_metadata/num_demos": self.num_demos})
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
elif isinstance(self.num_demos, list):
|
| 303 |
+
self.verbalization.steps.append(
|
| 304 |
+
RandomSizeSample(
|
| 305 |
+
from_stream=self.demos_pool_name,
|
| 306 |
+
to_field=self.demos_field,
|
| 307 |
+
sampler=self.sampler,
|
| 308 |
+
sample_sizes=self.num_demos,
|
| 309 |
+
)
|
| 310 |
)
|
| 311 |
+
self.verbalization.steps.append(
|
| 312 |
+
GetLength(field="demos", to_field="recipe_metadata/num_demos")
|
| 313 |
+
)
|
| 314 |
+
else:
|
| 315 |
+
raise ValueError("num_demos must be int or List[int]")
|
| 316 |
+
|
| 317 |
+
if isinstance(self.template, list):
|
| 318 |
+
self.verbalization.steps.append(
|
| 319 |
+
ApplyRandomTemplate(
|
| 320 |
+
templates=self.template, demos_field=self.demos_field
|
| 321 |
+
)
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
self.verbalization.steps.append(
|
| 325 |
+
ApplySingleTemplate(
|
| 326 |
+
template=self.template, demos_field=self.demos_field
|
| 327 |
+
)
|
| 328 |
+
)
|
| 329 |
+
else:
|
| 330 |
+
self.verbalization.steps.append(
|
| 331 |
+
Set(fields={"recipe_metadata/num_demos": 0})
|
| 332 |
)
|
| 333 |
+
if isinstance(self.template, list):
|
| 334 |
+
self.verbalization.steps.append(
|
| 335 |
+
ApplyRandomTemplate(templates=self.template)
|
| 336 |
+
)
|
| 337 |
+
else:
|
| 338 |
+
self.verbalization.steps.append(
|
| 339 |
+
ApplySingleTemplate(template=self.template)
|
| 340 |
+
)
|
| 341 |
|
| 342 |
+
self.verbalization.steps.append(self.system_prompt)
|
| 343 |
+
self.verbalization.steps.append(self.format)
|
| 344 |
+
if self.augmentor.augment_model_input:
|
| 345 |
+
self.verbalization.steps.append(self.augmentor)
|
| 346 |
|
| 347 |
+
if self.postprocessors is not None:
|
| 348 |
+
self.finalize.steps.append(
|
| 349 |
+
Set(fields={"postprocessors": self.postprocessors})
|
|
|
|
|
|
|
| 350 |
)
|
| 351 |
+
|
| 352 |
+
if self.metrics is not None:
|
| 353 |
+
self.finalize.steps.append(Set(fields={"metrics": self.metrics}))
|
| 354 |
+
|
| 355 |
+
self.finalize.steps.append(Finalize())
|
| 356 |
|
| 357 |
|
| 358 |
class StandardRecipeWithIndexes(BaseRecipe):
|
stream.py
CHANGED
|
@@ -2,7 +2,6 @@ import tempfile
|
|
| 2 |
import traceback
|
| 3 |
import warnings
|
| 4 |
from abc import abstractmethod
|
| 5 |
-
from copy import deepcopy
|
| 6 |
from typing import Any, Callable, Dict, Generator, Iterable, List
|
| 7 |
|
| 8 |
from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict
|
|
@@ -11,6 +10,7 @@ from .dataclass import Dataclass, OptionalField
|
|
| 11 |
from .generator_utils import CopyingReusableGenerator, ReusableGenerator
|
| 12 |
from .logging_utils import get_logger
|
| 13 |
from .settings_utils import get_settings
|
|
|
|
| 14 |
|
| 15 |
settings = get_settings()
|
| 16 |
logger = get_logger()
|
|
|
|
| 2 |
import traceback
|
| 3 |
import warnings
|
| 4 |
from abc import abstractmethod
|
|
|
|
| 5 |
from typing import Any, Callable, Dict, Generator, Iterable, List
|
| 6 |
|
| 7 |
from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict
|
|
|
|
| 10 |
from .generator_utils import CopyingReusableGenerator, ReusableGenerator
|
| 11 |
from .logging_utils import get_logger
|
| 12 |
from .settings_utils import get_settings
|
| 13 |
+
from .utils import deepcopy
|
| 14 |
|
| 15 |
settings = get_settings()
|
| 16 |
logger = get_logger()
|
struct_data_operators.py
CHANGED
|
@@ -18,7 +18,6 @@ For key-value pairs, expected input format is:
|
|
| 18 |
import json
|
| 19 |
import random
|
| 20 |
from abc import ABC, abstractmethod
|
| 21 |
-
from copy import deepcopy
|
| 22 |
from typing import (
|
| 23 |
Any,
|
| 24 |
Dict,
|
|
@@ -30,6 +29,7 @@ import pandas as pd
|
|
| 30 |
|
| 31 |
from .dict_utils import dict_get
|
| 32 |
from .operators import FieldOperator, InstanceOperator
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
class SerializeTable(ABC, FieldOperator):
|
|
|
|
| 18 |
import json
|
| 19 |
import random
|
| 20 |
from abc import ABC, abstractmethod
|
|
|
|
| 21 |
from typing import (
|
| 22 |
Any,
|
| 23 |
Dict,
|
|
|
|
| 29 |
|
| 30 |
from .dict_utils import dict_get
|
| 31 |
from .operators import FieldOperator, InstanceOperator
|
| 32 |
+
from .utils import deepcopy
|
| 33 |
|
| 34 |
|
| 35 |
class SerializeTable(ABC, FieldOperator):
|
task.py
CHANGED
|
@@ -4,7 +4,7 @@ from typing import Any, Dict, List, Optional, Union
|
|
| 4 |
from .artifact import fetch_artifact
|
| 5 |
from .dataclass import DeprecatedField
|
| 6 |
from .deprecation_utils import deprecation
|
| 7 |
-
from .
|
| 8 |
from .operator import InstanceOperator
|
| 9 |
from .type_utils import (
|
| 10 |
Type,
|
|
@@ -77,12 +77,14 @@ class Task(InstanceOperator):
|
|
| 77 |
def prepare(self):
|
| 78 |
super().prepare()
|
| 79 |
if self.input_fields is not None and self.inputs is not None:
|
| 80 |
-
raise
|
| 81 |
-
"Conflicting attributes: 'input_fields' cannot be set simultaneously with 'inputs'. Use only 'input_fields'"
|
|
|
|
| 82 |
)
|
| 83 |
if self.reference_fields is not None and self.outputs is not None:
|
| 84 |
-
raise
|
| 85 |
-
"Conflicting attributes: 'reference_fields' cannot be set simultaneously with 'output'. Use only 'reference_fields'"
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
self.input_fields = (
|
|
@@ -107,9 +109,15 @@ class Task(InstanceOperator):
|
|
| 107 |
|
| 108 |
def verify(self):
|
| 109 |
if self.input_fields is None:
|
| 110 |
-
raise
|
|
|
|
|
|
|
|
|
|
| 111 |
if self.reference_fields is None:
|
| 112 |
-
raise
|
|
|
|
|
|
|
|
|
|
| 113 |
for io_type in ["input_fields", "reference_fields"]:
|
| 114 |
data = (
|
| 115 |
self.input_fields
|
|
@@ -118,11 +126,12 @@ class Task(InstanceOperator):
|
|
| 118 |
)
|
| 119 |
|
| 120 |
if isinstance(data, list) or not is_type_dict(data):
|
| 121 |
-
|
| 122 |
f"'{io_type}' field of Task should be a dictionary of field names and their types. "
|
| 123 |
f"For example, {{'text': str, 'classes': List[str]}}. Instead only '{data}' was "
|
| 124 |
f"passed. All types will be assumed to be 'Any'. In future version of unitxt this "
|
| 125 |
-
f"will raise an exception."
|
|
|
|
| 126 |
)
|
| 127 |
data = {key: Any for key in data}
|
| 128 |
if io_type == "input_fields":
|
|
@@ -131,11 +140,12 @@ class Task(InstanceOperator):
|
|
| 131 |
self.reference_fields = data
|
| 132 |
|
| 133 |
if not self.prediction_type:
|
| 134 |
-
|
| 135 |
"'prediction_type' was not set in Task. It is used to check the output of "
|
| 136 |
"template post processors is compatible with the expected input of the metrics. "
|
| 137 |
"Setting `prediction_type` to 'Any' (no checking is done). In future version "
|
| 138 |
-
"of unitxt this will raise an exception."
|
|
|
|
| 139 |
)
|
| 140 |
self.prediction_type = Any
|
| 141 |
|
|
@@ -191,18 +201,20 @@ class Task(InstanceOperator):
|
|
| 191 |
):
|
| 192 |
continue
|
| 193 |
|
| 194 |
-
raise
|
| 195 |
f"The task's prediction type ({prediction_type}) and '{metric_id}' "
|
| 196 |
-
f"metric's prediction type ({metric_prediction_type}) are different."
|
|
|
|
| 197 |
)
|
| 198 |
|
| 199 |
def verify_defaults(self):
|
| 200 |
if self.defaults:
|
| 201 |
if not isinstance(self.defaults, dict):
|
| 202 |
-
raise
|
| 203 |
f"If specified, the 'defaults' must be a dictionary, "
|
| 204 |
f"however, '{self.defaults}' was provided instead, "
|
| 205 |
-
f"which is of type '{to_type_string(type(self.defaults))}'."
|
|
|
|
| 206 |
)
|
| 207 |
|
| 208 |
for default_name, default_value in self.defaults.items():
|
|
|
|
| 4 |
from .artifact import fetch_artifact
|
| 5 |
from .dataclass import DeprecatedField
|
| 6 |
from .deprecation_utils import deprecation
|
| 7 |
+
from .error_utils import Documentation, UnitxtError, UnitxtWarning
|
| 8 |
from .operator import InstanceOperator
|
| 9 |
from .type_utils import (
|
| 10 |
Type,
|
|
|
|
| 77 |
def prepare(self):
|
| 78 |
super().prepare()
|
| 79 |
if self.input_fields is not None and self.inputs is not None:
|
| 80 |
+
raise UnitxtError(
|
| 81 |
+
"Conflicting attributes: 'input_fields' cannot be set simultaneously with 'inputs'. Use only 'input_fields'",
|
| 82 |
+
Documentation.ADDING_TASK,
|
| 83 |
)
|
| 84 |
if self.reference_fields is not None and self.outputs is not None:
|
| 85 |
+
raise UnitxtError(
|
| 86 |
+
"Conflicting attributes: 'reference_fields' cannot be set simultaneously with 'output'. Use only 'reference_fields'",
|
| 87 |
+
Documentation.ADDING_TASK,
|
| 88 |
)
|
| 89 |
|
| 90 |
self.input_fields = (
|
|
|
|
| 109 |
|
| 110 |
def verify(self):
|
| 111 |
if self.input_fields is None:
|
| 112 |
+
raise UnitxtError(
|
| 113 |
+
"Missing attribute in task: 'input_fields' not set.",
|
| 114 |
+
Documentation.ADDING_TASK,
|
| 115 |
+
)
|
| 116 |
if self.reference_fields is None:
|
| 117 |
+
raise UnitxtError(
|
| 118 |
+
"Missing attribute in task: 'reference_fields' not set.",
|
| 119 |
+
Documentation.ADDING_TASK,
|
| 120 |
+
)
|
| 121 |
for io_type in ["input_fields", "reference_fields"]:
|
| 122 |
data = (
|
| 123 |
self.input_fields
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
if isinstance(data, list) or not is_type_dict(data):
|
| 129 |
+
UnitxtWarning(
|
| 130 |
f"'{io_type}' field of Task should be a dictionary of field names and their types. "
|
| 131 |
f"For example, {{'text': str, 'classes': List[str]}}. Instead only '{data}' was "
|
| 132 |
f"passed. All types will be assumed to be 'Any'. In future version of unitxt this "
|
| 133 |
+
f"will raise an exception.",
|
| 134 |
+
Documentation.ADDING_TASK,
|
| 135 |
)
|
| 136 |
data = {key: Any for key in data}
|
| 137 |
if io_type == "input_fields":
|
|
|
|
| 140 |
self.reference_fields = data
|
| 141 |
|
| 142 |
if not self.prediction_type:
|
| 143 |
+
UnitxtWarning(
|
| 144 |
"'prediction_type' was not set in Task. It is used to check the output of "
|
| 145 |
"template post processors is compatible with the expected input of the metrics. "
|
| 146 |
"Setting `prediction_type` to 'Any' (no checking is done). In future version "
|
| 147 |
+
"of unitxt this will raise an exception.",
|
| 148 |
+
Documentation.ADDING_TASK,
|
| 149 |
)
|
| 150 |
self.prediction_type = Any
|
| 151 |
|
|
|
|
| 201 |
):
|
| 202 |
continue
|
| 203 |
|
| 204 |
+
raise UnitxtError(
|
| 205 |
f"The task's prediction type ({prediction_type}) and '{metric_id}' "
|
| 206 |
+
f"metric's prediction type ({metric_prediction_type}) are different.",
|
| 207 |
+
Documentation.ADDING_TASK,
|
| 208 |
)
|
| 209 |
|
| 210 |
def verify_defaults(self):
|
| 211 |
if self.defaults:
|
| 212 |
if not isinstance(self.defaults, dict):
|
| 213 |
+
raise UnitxtError(
|
| 214 |
f"If specified, the 'defaults' must be a dictionary, "
|
| 215 |
f"however, '{self.defaults}' was provided instead, "
|
| 216 |
+
f"which is of type '{to_type_string(type(self.defaults))}'.",
|
| 217 |
+
Documentation.ADDING_TASK,
|
| 218 |
)
|
| 219 |
|
| 220 |
for default_name, default_value in self.defaults.items():
|
templates.py
CHANGED
|
@@ -6,17 +6,20 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
|
| 6 |
from .artifact import Artifact
|
| 7 |
from .collections import ListCollection
|
| 8 |
from .dataclass import NonPositionalField
|
|
|
|
|
|
|
| 9 |
from .operator import InstanceOperator
|
| 10 |
from .random_utils import new_random_generator
|
| 11 |
from .type_utils import isoftype
|
| 12 |
|
| 13 |
|
| 14 |
-
class TemplateFormatKeyError(
|
| 15 |
def __init__(self, template, data, data_type, format_str, format_name):
|
| 16 |
keys = ", ".join(data.keys())
|
| 17 |
super().__init__(
|
| 18 |
f"Available {data_type}s are [{keys}] "
|
| 19 |
-
f"but {template.__class__.__name__}.{format_name} format requires a different ones: '{format_str}'"
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
|
|
@@ -92,6 +95,7 @@ class Template(InstanceOperator):
|
|
| 92 |
"references": references,
|
| 93 |
"instruction": instruction,
|
| 94 |
"target_prefix": target_prefix,
|
|
|
|
| 95 |
}
|
| 96 |
|
| 97 |
@abstractmethod
|
|
@@ -108,9 +112,6 @@ class Template(InstanceOperator):
|
|
| 108 |
) -> Tuple[str, List[str]]:
|
| 109 |
pass
|
| 110 |
|
| 111 |
-
def get_postprocessors(self) -> List[str]:
|
| 112 |
-
return self.postprocessors
|
| 113 |
-
|
| 114 |
def serialize_data(self, data):
|
| 115 |
return {
|
| 116 |
k: ", ".join(str(t) for t in v) if isinstance(v, list) else v
|
|
@@ -123,6 +124,11 @@ class Template(InstanceOperator):
|
|
| 123 |
if serialize:
|
| 124 |
data = self.serialize_data(data)
|
| 125 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
return format_str.format(**data)
|
| 127 |
except KeyError as e:
|
| 128 |
raise TemplateFormatKeyError(
|
|
@@ -130,6 +136,49 @@ class Template(InstanceOperator):
|
|
| 130 |
) from e
|
| 131 |
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
class InputOutputTemplate(Template):
|
| 134 |
"""Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.
|
| 135 |
|
|
@@ -471,8 +520,9 @@ class MultipleChoiceTemplate(Template):
|
|
| 471 |
try:
|
| 472 |
return reference_fields[self.choices_field].index(target)
|
| 473 |
except ValueError as e:
|
| 474 |
-
raise
|
| 475 |
-
f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}"
|
|
|
|
| 476 |
) from e
|
| 477 |
return target
|
| 478 |
|
|
@@ -485,8 +535,9 @@ class MultipleChoiceTemplate(Template):
|
|
| 485 |
try:
|
| 486 |
target = reference_fields[self.choices_field].index(target)
|
| 487 |
except ValueError as e:
|
| 488 |
-
raise
|
| 489 |
-
f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}"
|
|
|
|
| 490 |
) from e
|
| 491 |
|
| 492 |
choices = self.inputs_to_choices(reference_fields, self.target_choice_format)
|
|
@@ -494,8 +545,9 @@ class MultipleChoiceTemplate(Template):
|
|
| 494 |
try:
|
| 495 |
target = choices[target]
|
| 496 |
except IndexError as e:
|
| 497 |
-
raise
|
| 498 |
-
f"MultipleChoiceTemplate cannot find index number {target} in choices: {choices}"
|
|
|
|
| 499 |
) from e
|
| 500 |
|
| 501 |
return target, [target]
|
|
@@ -574,21 +626,21 @@ class YesNoTemplate(Template):
|
|
| 574 |
try:
|
| 575 |
gold_class_names = reference_fields[self.label_field]
|
| 576 |
except KeyError as e:
|
| 577 |
-
raise
|
| 578 |
f"Available reference_fields are {list(reference_fields.keys())}, missing required label field: '{self.label_field}'."
|
| 579 |
) from e
|
| 580 |
if not isinstance(gold_class_names, list):
|
| 581 |
-
raise
|
| 582 |
f"Unexpected value for gold_class_names: '{gold_class_names}'. Expecting a list."
|
| 583 |
)
|
| 584 |
try:
|
| 585 |
queried_class_name = reference_fields[self.class_field]
|
| 586 |
except KeyError as e:
|
| 587 |
-
raise
|
| 588 |
f"Available reference_fields are {list(reference_fields.keys())}, missing required class field: '{self.class_field}'."
|
| 589 |
) from e
|
| 590 |
if not queried_class_name or not isinstance(queried_class_name, str):
|
| 591 |
-
raise
|
| 592 |
f"Unexpected value for queried_class_names: '{queried_class_name}'. Expected a string."
|
| 593 |
)
|
| 594 |
if queried_class_name in gold_class_names:
|
|
@@ -674,8 +726,9 @@ class MultiLabelTemplate(InputOutputTemplate):
|
|
| 674 |
) -> str:
|
| 675 |
labels = reference_fields[self.labels_field]
|
| 676 |
if not isinstance(labels, list):
|
| 677 |
-
raise
|
| 678 |
-
f"MultiLabelTemplate requires labels field '{self.labels_field}' to be a list. Got {self.labels_field}<{type(labels).__name__}>: {labels}"
|
|
|
|
| 679 |
)
|
| 680 |
if len(labels) == 0:
|
| 681 |
labels = [self.empty_label]
|
|
@@ -694,12 +747,14 @@ class MultiReferenceTemplate(InputOutputTemplate):
|
|
| 694 |
) -> List[str]:
|
| 695 |
references = reference_fields[self.references_field]
|
| 696 |
if not isoftype(references, List[str]):
|
| 697 |
-
raise
|
| 698 |
-
f"MultiReferenceTemplate requires references field '{self.references_field}' to be List[str]. Got {self.references_field}<{type(references).__name__}>: {references}"
|
|
|
|
| 699 |
)
|
| 700 |
if len(references) == 0:
|
| 701 |
-
raise
|
| 702 |
-
"No references found. MultiReferenceTemplate requires at least one reference."
|
|
|
|
| 703 |
)
|
| 704 |
|
| 705 |
if self.random_reference:
|
|
|
|
| 6 |
from .artifact import Artifact
|
| 7 |
from .collections import ListCollection
|
| 8 |
from .dataclass import NonPositionalField
|
| 9 |
+
from .dict_utils import dict_set
|
| 10 |
+
from .error_utils import Documentation, UnitxtError
|
| 11 |
from .operator import InstanceOperator
|
| 12 |
from .random_utils import new_random_generator
|
| 13 |
from .type_utils import isoftype
|
| 14 |
|
| 15 |
|
| 16 |
+
class TemplateFormatKeyError(UnitxtError):
|
| 17 |
def __init__(self, template, data, data_type, format_str, format_name):
|
| 18 |
keys = ", ".join(data.keys())
|
| 19 |
super().__init__(
|
| 20 |
f"Available {data_type}s are [{keys}] "
|
| 21 |
+
f"but {template.__class__.__name__}.{format_name} format requires a different ones: '{format_str}'",
|
| 22 |
+
Documentation.ADDING_TEMPLATE,
|
| 23 |
)
|
| 24 |
|
| 25 |
|
|
|
|
| 95 |
"references": references,
|
| 96 |
"instruction": instruction,
|
| 97 |
"target_prefix": target_prefix,
|
| 98 |
+
"postprocessors": self.postprocessors,
|
| 99 |
}
|
| 100 |
|
| 101 |
@abstractmethod
|
|
|
|
| 112 |
) -> Tuple[str, List[str]]:
|
| 113 |
pass
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
def serialize_data(self, data):
|
| 116 |
return {
|
| 117 |
k: ", ".join(str(t) for t in v) if isinstance(v, list) else v
|
|
|
|
| 124 |
if serialize:
|
| 125 |
data = self.serialize_data(data)
|
| 126 |
try:
|
| 127 |
+
if format_str is None:
|
| 128 |
+
raise UnitxtError(
|
| 129 |
+
f"Required field 'output_format' of class {self.__class__.__name__} not set in {self.__class__.__name__}",
|
| 130 |
+
Documentation.ADDING_TEMPLATE,
|
| 131 |
+
)
|
| 132 |
return format_str.format(**data)
|
| 133 |
except KeyError as e:
|
| 134 |
raise TemplateFormatKeyError(
|
|
|
|
| 136 |
) from e
|
| 137 |
|
| 138 |
|
| 139 |
+
class ApplyTemplate(InstanceOperator):
|
| 140 |
+
demos_field: Optional[str] = None
|
| 141 |
+
|
| 142 |
+
@abstractmethod
|
| 143 |
+
def get_template(self, instance: Dict[str, Any]) -> Template:
|
| 144 |
+
pass
|
| 145 |
+
|
| 146 |
+
def apply(self, template: Template, instance: Dict[str, Any]):
|
| 147 |
+
return template.process_instance(instance)
|
| 148 |
+
|
| 149 |
+
def process(
|
| 150 |
+
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 151 |
+
) -> Dict[str, Any]:
|
| 152 |
+
template = self.get_template(instance)
|
| 153 |
+
|
| 154 |
+
if self.demos_field is not None:
|
| 155 |
+
if self.demos_field not in instance:
|
| 156 |
+
raise ValueError("Demos field is missing.")
|
| 157 |
+
instance[self.demos_field] = [
|
| 158 |
+
self.apply(template, demo_instance)
|
| 159 |
+
for demo_instance in instance[self.demos_field]
|
| 160 |
+
]
|
| 161 |
+
dict_set(instance, "recipe_metadata/template", template)
|
| 162 |
+
return self.apply(template, instance)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class ApplySingleTemplate(ApplyTemplate):
|
| 166 |
+
template: Template
|
| 167 |
+
|
| 168 |
+
def get_template(self, instance: Dict[str, Any]) -> Template:
|
| 169 |
+
return self.template
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class ApplyRandomTemplate(ApplyTemplate):
|
| 173 |
+
templates: List[Template]
|
| 174 |
+
|
| 175 |
+
def get_template(self, instance: Dict[str, Any]) -> Template:
|
| 176 |
+
random_generator = new_random_generator(
|
| 177 |
+
{**instance["input_fields"], **instance["reference_fields"]}
|
| 178 |
+
)
|
| 179 |
+
return random_generator.choice(self.templates)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
class InputOutputTemplate(Template):
|
| 183 |
"""Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.
|
| 184 |
|
|
|
|
| 520 |
try:
|
| 521 |
return reference_fields[self.choices_field].index(target)
|
| 522 |
except ValueError as e:
|
| 523 |
+
raise UnitxtError(
|
| 524 |
+
f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}",
|
| 525 |
+
Documentation.ADDING_TEMPLATE,
|
| 526 |
) from e
|
| 527 |
return target
|
| 528 |
|
|
|
|
| 535 |
try:
|
| 536 |
target = reference_fields[self.choices_field].index(target)
|
| 537 |
except ValueError as e:
|
| 538 |
+
raise UnitxtError(
|
| 539 |
+
f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}",
|
| 540 |
+
Documentation.ADDING_TEMPLATE,
|
| 541 |
) from e
|
| 542 |
|
| 543 |
choices = self.inputs_to_choices(reference_fields, self.target_choice_format)
|
|
|
|
| 545 |
try:
|
| 546 |
target = choices[target]
|
| 547 |
except IndexError as e:
|
| 548 |
+
raise UnitxtError(
|
| 549 |
+
f"MultipleChoiceTemplate cannot find index number {target} in choices: {choices}",
|
| 550 |
+
Documentation.ADDING_TEMPLATE,
|
| 551 |
) from e
|
| 552 |
|
| 553 |
return target, [target]
|
|
|
|
| 626 |
try:
|
| 627 |
gold_class_names = reference_fields[self.label_field]
|
| 628 |
except KeyError as e:
|
| 629 |
+
raise UnitxtError(
|
| 630 |
f"Available reference_fields are {list(reference_fields.keys())}, missing required label field: '{self.label_field}'."
|
| 631 |
) from e
|
| 632 |
if not isinstance(gold_class_names, list):
|
| 633 |
+
raise UnitxtError(
|
| 634 |
f"Unexpected value for gold_class_names: '{gold_class_names}'. Expecting a list."
|
| 635 |
)
|
| 636 |
try:
|
| 637 |
queried_class_name = reference_fields[self.class_field]
|
| 638 |
except KeyError as e:
|
| 639 |
+
raise UnitxtError(
|
| 640 |
f"Available reference_fields are {list(reference_fields.keys())}, missing required class field: '{self.class_field}'."
|
| 641 |
) from e
|
| 642 |
if not queried_class_name or not isinstance(queried_class_name, str):
|
| 643 |
+
raise UnitxtError(
|
| 644 |
f"Unexpected value for queried_class_names: '{queried_class_name}'. Expected a string."
|
| 645 |
)
|
| 646 |
if queried_class_name in gold_class_names:
|
|
|
|
| 726 |
) -> str:
|
| 727 |
labels = reference_fields[self.labels_field]
|
| 728 |
if not isinstance(labels, list):
|
| 729 |
+
raise UnitxtError(
|
| 730 |
+
f"MultiLabelTemplate requires labels field '{self.labels_field}' to be a list. Got {self.labels_field}<{type(labels).__name__}>: {labels}",
|
| 731 |
+
Documentation.ADDING_TEMPLATE,
|
| 732 |
)
|
| 733 |
if len(labels) == 0:
|
| 734 |
labels = [self.empty_label]
|
|
|
|
| 747 |
) -> List[str]:
|
| 748 |
references = reference_fields[self.references_field]
|
| 749 |
if not isoftype(references, List[str]):
|
| 750 |
+
raise UnitxtError(
|
| 751 |
+
f"MultiReferenceTemplate requires references field '{self.references_field}' to be List[str]. Got {self.references_field}<{type(references).__name__}>: {references}",
|
| 752 |
+
Documentation.ADDING_TEMPLATE,
|
| 753 |
)
|
| 754 |
if len(references) == 0:
|
| 755 |
+
raise UnitxtError(
|
| 756 |
+
"No references found. MultiReferenceTemplate requires at least one reference.",
|
| 757 |
+
Documentation.ADDING_TEMPLATE,
|
| 758 |
)
|
| 759 |
|
| 760 |
if self.random_reference:
|
utils.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import importlib.util
|
| 2 |
import json
|
| 3 |
import os
|
|
@@ -125,3 +126,7 @@ def import_module_from_file(file_path):
|
|
| 125 |
# Load the module
|
| 126 |
spec.loader.exec_module(module)
|
| 127 |
return module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
import importlib.util
|
| 3 |
import json
|
| 4 |
import os
|
|
|
|
| 126 |
# Load the module
|
| 127 |
spec.loader.exec_module(module)
|
| 128 |
return module
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def deepcopy(obj):
|
| 132 |
+
return copy.deepcopy(obj)
|
version.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
version = "1.12.
|
|
|
|
| 1 |
+
version = "1.12.3"
|